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Abstract 

Radiomics has revolutionized the world of medical imaging. The aim of this review is to guide 

oncologists in radiomics and its applications in diagnosis, prediction of response and damage, prediction 

of survival and prognosis in lung cancer. In this review, we analyzed published literature on PubMed 

and MEDLINE with papers published in the last 10 years. We included papers in English language with 

information about radiomics features, and diagnostic, predictive and prognosis of radiomics in lung 

cancer. All citations were evaluated for relevant content and validation. 

Relevance for Patients: The evolution of technology allows the development of computer algorithms 

that facilitate the diagnosis and evaluation of response after different oncological treatments and their 

non-invasive follow-up. 

KEYWORDS: radiomics, radiogenomics, lung cancer, diagnosis and response 
 
  



Journal of Clinical and Translational Research 
10.18053/Jctres/06.2020S4.002 

 
1. Introduction 

Lung cancer is the first cause of cancer in the world, constituting the first cause of cancer 

mortality1. There are two types of lung cancer, non-small cell lung cancer (NSCLC) and small 

cell lung cancer (SLC). Non-small cell lung cancer includes adenocarcinomas and epidermoid 

carcinomas.  

The diagnosis of lung cancer must be histological, but sometimes it is not possible because the 

lesion is not accessible or the diagnostic procedure represents high risk for the patient. 

Sometimes, the oncological treatment can be planned despite the lack of histological diagnosis. 

Surgery and radiotherapy are locoregional treatments that contribute, alone or in combination 

with other treatments, to the cure of early stages lung cancer. In more advanced stages, when 

metastases are present, chemotherapy and other systemic treatments are usually the treatment 

of choice. Stereotactic Body RadioTherapy, or SBRT, is a high precision irradiation technique, 

which allows very high doses to be delivered to the tumour in a limited number of fractions, 

with a highly cytotoxic biological ablative effect, and minimal doses to the organ at risk2. The 

use of SBRT to treat early stage lung cancer has become increasingly due to proven efficacy, 

demonstrating local control at 3 years of up to 98% with limited relevant toxicity3.  

Radiomics was introduced by Lambin4 in 2012, but Kumar5 extended the definition. Radiomics 

allows the conversion of digital medical images into data to extract the underlying 

physiopathology. Radiomics was designed to decode the information and characteristics of 

lesion images to improve their interpretation. It is a product of digital imaging combined with 

various computer techniques. The use of this tool could provide information to improve medical 

decision-making and screening programs6. In addition, it could be an appropriate non-invasive 

tool to determine malignancy, tumor subtype, stage tumors, treatment, or predict response, 

relapses and prognosis. For its development, radiologists, medical experts, mathematicians and 

computer scientists are necessary. Radiomics can be extracted from CT, MRI and PET 

imaging7.  

 
2. Radiomic features: Data extraction and analysis 

Radiomics analysis allows evaluation of medical images. The workflow includes image 

acquisition and reconstruction; definition of ROI (Region Of Interest) and segmentation; 

extraction and quantification of characteristics; and finally, construction of predictive and 

prognostic models with the information identified7,8.  

 
2.1 Image acquisition and reconstruction 

Image acquisition is important in the final results of the analysis. Standardization of image data 

can help to establish predictive models. Characteristics include kV, mAs, slice size, breath 

control method, configuration, and contrast. Variations in image acquisition and reconstruction 

parameters can affect the image value to compare and analyze radiomics studies. It is very 

important to maintain a homogeneous criterion9. Radiomics based on non-contrast CT images 

has shown in some studies a higher efficiency compared to contrast CT images. He et al10 

suggested that biological heterogeneity within the tumor, represented by radiological features, 

may be confused with intravenous contrast agents, leading to inferior discrimination between 

benign and malignant tumors. 
 

 

2.2 Segmentation of the area of interest 
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Once the image is obtained, the region of interest, the area of the tumor, is delimited. This 

process is denominated segmentation. Segmentation can be manual, automatic or semi-

automatic. The gold standard includes manual segmentation by experts but is operator 

dependent. The automatic segmentation uses pre-selected parameters and is ideal for its 

accuracy, reproducibility and consistency. However, manual intervention is necessary to 

validate the automatic segmentation. There is no universal method, the same algorithm can give 

variable results.  The semiautomatic segmentation is able to combine two previous procedures 

being the most recommended. Segmentation is crucial, an error in this phase will modify the 

whole analysis11-13. 

 

2.3 Extraction and quantification of features  

It allows to extract and evaluate large volumes of data obtained from the images. Radiomics 

includes four types of analysis: morphological, statistical, regional and model-based. The most 

basic radiomics analysis is morphological analysis. Statistical analysis includes first-order and 

highly-order features, histogram and texture respectively. Regional analysis includes intratumor 

heterogeneity and characteristics around the tumor. Model-based is analyzed with mathematical 

approach. 

 

Morphological analysis includes information about shape14. Shape allows to evaluate physical 

characteristics of the tumour and differentiate between malignant and benign nodules15. Shape 

parameters include diameter, volume, area under the curve (AUC) and wave16.  To study the 

shape, the segmented lesions are constructed in 3D images. The most commonly used 

parameters are maximum and minimum diameter and volume. The volume is defined by 

counting the number of voxels in the tumor and multiplying by the volume of the voxel. Volume 

is a key parameter, a short volume doubling time reflects high histological aggressiveness and 

suggests poor prognosis17,18. Indeed, volume is a tool for evaluating response to treatment19,20.  

 

 

Intensity is analyzed in histograms which are graphic representations of the intensity 

distribution in an image. Intensity analysis includes range, mean, median, standard deviation, 

minimum, maximum, kurtosis, energy, entropy, uniformity, variance and skewness; and can be 

used to predict the nature of the lesion and prognosis. Intensity characteristics are dependent on 

the reconstruction and image acquisition parameters (cut size and voxel size)19. Texture 

describes the relationship between neighboring pixels and their distribution through the nodes. 

The texture determines the tumor´s heterogeneity, which is very important in the aggressiveness 

evaluation, allowing the differentiation between benign and malignant lesions. For texture 

extraction the most used method includes second order statistics and co-occurrence matrix 

characteristics constructed using number, distance, and angle of gray levels in the image. 

Texture parameter includes correlation, clustering, contrast, energy, and entropy. Entropy, 

describes the randomness of the surrounding intensities within a grayscale image. Wavelet 

allows to decompose the image data into different frequency components and use this data to 

extract characteristics related to the texture and intensity of the image. These are filters that 

transform an array of complex lines or radio waves. The most common is the Coiflet wave 

transformation21. They are used in diagnosis and evaluation of response to treatment. It is 

necessary to standardize it. 

 

The relationship between the tumor and the surrounding healthy surface is another element of 

the tumor microenvironment. The discrete compaction is related to its circularity and this to the 

invasion around the tumor22.The neighboring gray tone matrix is a parameter to differentiate 

gray tones including busyness, complexity and texture length. It is necessary to evaluate these 
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data with statistical co-variance7. There are several calculation algorithms, one example is in 

neighborhood gray tone various matrices, which analyzes the intensity values around and within 

the pixels, and has been shown to be a predictor of survival in patients with NSCLC or the gray 

level co-occurrence matrix that uses the distance and angle of a combination of grays that occur 

in an image19. Aerts et al20 found great correlation between gene expression and textures. Cook 

et al22 analyzed texture to predict survival after chemoradiotherapy (CRT) in lung cancer. 

Ganeshan et al23 found that tumor heterogeneity can be evaluated by non-contrast CT texture 

analysis and has the potential to provide an independent predictor of survival and prognosis for 

patients with non-small cell lung cancer. In general, several studies have related texture with 

stage, metastasis, response, survival and metagenesis in lung cancer22,24. This is a promising 

prognostic indicator. 

 

 

2.4 Construction of predictive models and prognosis in a non-invasive method 

Once the characteristics have been extracted, the next step is to establish relationships between 

radiomics parameters and clinical variables. This can be done from direct statistical analysis 

based on hypotheses on machine learning methods. Statistical analysis is the most commonly 

used in lung cancer. One of the predictive models developed combines: size, concavity, contour 

and spiculation25. Liu et al demonstrated that size can be a good predictor in itself and correlates 

with overall survival. This model can be used to define not only the nature of the primary tumor 

but also the nodes26,27. 

 

3. Radiomics applications in lung cancer 

 

3.1 Diagnostic prediction: malignant vs. benign histology 

Images in oncology can be predictive, and diagnostic. In lung cancer screening, correct 

diagnosis is essential. Some studies have reported that radiomics is useful for differentiating 

NSCLC from other benign tumors or pre-malignant lesions, by extracting characteristics of 

solid nodules28. The differentiation between benign nodules from malignant, solid regions from 

sub-solids, or adenocarcinoma in situ from invasive is essential for correct treatment of lung 

cancer. Previously, discrimination between invasive and non-invasive proportions of GGO 

(Ground Glass Opacity) nodules was limited to visual perception and subjective CT analysis. 

In the radiomic era, some studies have shown that entropy and a high attenuation value are 

factors of invasiveness in adenocarcinoma29. In addition, the 97.5 percentile and slope of CT 

attenuation have been defined as predictors of changes in attenuation and growth of the solid 

zone of the GGO node, providing additional information on invasiveness30.  

In lung adenocarcinoma, the increase in cellularity is important because it reflects the presence 

of invasiveness29. Coroller et al have differentiated pre-invasive tumors from invasive 

adenocarcinomas using texture, high kurtosis and small nodules35. Gradient characteristics 

extracted in various resolutions and orientations provide nodal information for detection and 

diagnosis31. Variability in nodule size and orientation relating to the lung adversely affects the 

gradient32. The study of tumour heterogeneity allows the differentiation of tumour 

aggressiveness14. 

 

Radiological analysis of the primary helps predict lymph node involvement. Yang et al33 built 

a model that correlated different characteristics with nodal involvement, with an AUC of 0.871 

in the training group and an AUC of 0.856 in the validation cohort. Zhong et al34 studied 300 

radiological characteristics in 492 patients with lung adenocarcinoma. The accuracy of the 

radiomic signature was 91.1%, suggesting that the radiomic signature of the primary tumor can 



Journal of Clinical and Translational Research 
10.18053/Jctres/06.2020S4.002 

 
be used for quantitative and non-invasive prediction of lymph node metastases in patients with 

lung cancer21. 

However, few studies have studied radiomic features of lymph nodes. Bayanati et al26 found 

that texture and shape identified malignant lymph nodes with a sensitivity of 81% and a 

specificity of 80%. Andersen et al27 demonstrated that texture analysis showed a significant 

difference between malignant and benign lymph nodes with an AUC of 83.4% and excellent 

reproducibility. Interestingly, Coroller et al35 performed analyses on both the primary tumor 

and the lymph nodes and demonstrated that the lymph node phenotype could present essential 

information in addition to that provided by the primary tumor alone.  

We should note that the studies focus on only one primary ROI per subject. There are many 

cases in which a patient has multiple nodes, which may be primary or metastatic. Focusing on 

a single ROI facilitates statistical analysis, but does not include the interactions among the 

different nodules; this is currently under development36. 

 

3.2 Prediction of response. Non-invasive monitoring tool  

After treatment, patients are monitored to assess the response to treatment and possible 

progressions and complications. This follow-up is usually done with imaging tests such as CT 

or PET. Response evaluation is through RECIST criteria (Response Evaluation Criteria in Solid 

Tumors). RECIST allows for standardized evaluation of size differences in serial CT scans after 

treatment to define the response. It has been adapted to the new therapies with iRC (Immune-

related response criteria) and mRECIST (modified RECIST), however, they are still not 

sufficient for the evaluation of the accurate response in certain scenarios. Sometimes, large 

inflammatory changes are described by treatments such as SBRT or immunotherapy. 

Radiomics has shown to be a promising tool in predicting response to treatment. There are 

several radiomic features related to this response such as tumor shape and textural patterns. It 

has been studied in evaluation of early response and treatment effectiveness. 

Some parameters studied in PET include SUV (standardized uptake value), MTV (metabolic 

tumor volume), and quantitative texture characteristics such as entropy, correlation, contrast 

and uniformity, and delta radiomics (volume, texture and intensity-volume histogram. Of these, 

texture by coarseness, contrast and busyness present strong correlation with response to CRT 

with RECIST, while SUV does not. Dong et al37 demonstrate correlation among coefficient of 

variation, MTV, and contrast with prediction of response to chemoradiotherapy. 

In CT findings such as pretreatment spherical shape, texture data, lymph node homogeneity, 

changes in primary tumor volume and histogram characteristics are potential predictors of 

patients with NSCLC after CRT., Coroller et al35 demonstrated that radiomic wavelet features 

predicted pathological complete response in patients treated with CRT. Jain et al38 demonstrated 

that textured features predicted pathological complete response in patients treated with trimodal 

therapy. Fave et al39 demonstrated that changes in intensity and texture of serial CT scans of 

stage III patients before, during, and after radiation therapy were predictive of tumor response. 

Variability in intensity and size are predictive of response after tyrosine kinase inhibitors40. 

In predicting response after SBRT, the use of shape and tumor heterogeneity features have been 

shown to be predictive41. Mattonen et al42 found an increased gray-level co-occurrence and gray 

level features in patients who recurred after early stage NSCLC radiotherapy. 

 

3.3 Predicting Radio-Induced Lung Injury (RILI) 

Distinguishing radio-induced damage from local recurrence is imperative. Mattonen et al42 

demonstrated that, compared to RILI, recurrence showed higher HU (Hounsfield Units) and 

higher SD (Standard Deviation) in the texture of the ground glass opacity nodule. When 
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comparing subjective study characteristics and quantitative changes, results showed that the 

key to distinguish RILI and early recurrence is time, 9 and 15 months after SBRT respectively. 

Mattonen et al42 described that GGO texture analysis can predict recurrence within 5 months 

after SBRT. Moran et al43 extracted first-order and gray-level texture characteristics to 

distinguish the severity of RILI in three categories. They demonstrated that texture 

characteristics provide better performance than first-order characteristics.  Cunliffe et al4 also 

combined radiomic characteristics with radiation dose and demonstrated that radiology can 

provide a quantitative and customized measure of radiation dose tolerance for each patient, 

which can be used to determine the likelihood of radiation-induced pneumonitis. 

 

3.4. Predicting risk of recurrence 

Takeda et al45, Essler et al46 and Zhang et al47 evaluated local recurrence in NSCLC after SBRT 

on PET images, with the SUV being a strong predictor with low variability. Pyka et al48 related 

the risk of recurrence to texture and entropy in CT in patients treated with radiotherapy. In 

addition, wavelet and textural features were overexpressed in patients with distant metastases 

who failed with SBRT. With respect to PET/CT scans, Li et al49 explored the SUV use of lymph 

nodes compared to primary tumor characteristics, and reported that lymph node characteristics 

added value in predicting relapse. 

 

3.5 Predicting prognosis and survival 

Grove et al50 found measures of heterogeneity as speculation and entropy indicators of 

prognosis of overall survival (OS). Ganeshan23 and Win51 found textural features correlated 

with OS, but Fried24 et al reported that texture is not correlated with OS, but it is correlated with 

locoregional control and disease-free survival (DFS) Song et al52 described wavelet correlated 

with OS, and. Huand53, Raghunath54 and Depeursinge55 found correlation between radiomic 

biomarkers in CT and progression free survival (PFS). Parmar et al21 found the association of 

size, intensity, shape, texture and wavelet with prognosis in lung cancer, stage and histology, 

and Coroller et al38 found a signature that correlated with distant metastasis.  

The texture is correlated in studies with heterogeneity and aggressiveness.  

Radiomics in PET is associated with survival including OS, PFS, locoregional free survival 

(LRFS) and distant metastases free survival (DMFS)56; and mean SUV max of 3.45 for DFS50. 

Delta radiomics of FDG PET correlates with OS in patients with NSCLC, as demonstrated by 

Carvalho et al in their study57. 

CT seems to be better than PET for predicting OS. Some studies have demonstrated that the 

combination of shape, intensity, texture and delta radiomics with clinical factors improves the 

predictive capacity.  

Of all the studies in this review, only one showed relationship between the intensity parameter 

and survival15. In addition, only one study used daily imaging of radiotherapy treatment and 

found that reduction in HU tumor correlated with cumulative dose and was associated with 

survival58. 

The most relevant studies in radiomics prediction of survival and local control are summarized 

in table 1. 
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4. Radiogenomics 

Genomics is central to targeted treatment of lung cancer. Radiogenomics is the relationship 

between radiomic phenotypes and genomic information. In general, studies have shown 

promising results using radiomics to identify radiographic tumor phenotypes that favor specific 

gene expressions. It is therefore essential to study the relationship between genomics and 

radiomics. Recent studies have studied the mutational state of tumors and radiomic signatures. 

Aerts et al9 applied this concept to lung cancer by studying how radiomic data in pre-treatment 

CT could non-invasively estimate mutations in EGFR, using volume, texture and gradient. 

While some groups have found correlations between mutations and radiomic features, these 

results are not always consistent. Yipp et al59 scanned radiomic signatures on PET and found 

that they could detect mutations in EGFR, being unable to detect correlation with KRAS. ALK, 

ROS1 and RET were associated with kurtosis and inverse variance in combination with clinical 

radiology in another study60,61. Radiogenomics in lung cancer is in development. The scientific 

community needs large studies and the integration of medical imaging, genomics and clinical 

data. 

Limitations 

Our review has limitations, including the analysis of retrospective studies and the heterogeneity 

of these studies. Indeed, another limitation was the number of articles reviewed and the criteria 

to choose which articles to analyze.  

Conclusions 

Radiomics is a promising non-invasive tool for the diagnosis and clinical management of lung 

cancer. Radiomics provides a more adequate and reproducible measurement of the tumour than 

other previously known methods to evaluate response. Furthermore, the combination of 

radiomics and genomics has a promising future. However, image acquisition protocols and 

radiomic analysis systems need to be standardized. More studies are needed to consolidate the 

data available. 
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