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Abstract 

Being able to interpret ‘null effects’ is important for cumulative knowledge generation in 

science. To draw informative conclusions from null-effects, researchers need to move beyond the 

incorrect interpretation of a non-significant result in a null-hypothesis significance test as 

evidence of the absence of an effect. We explain how to statistically evaluate null-results using 

equivalence tests, Bayesian estimation, and Bayes factors. A worked example demonstrates how 

to apply these statistical tools and interpret the results. Finally, we explain how no statistical 

approach can actually prove that the null-hypothesis is true, and briefly discuss the philosophical 

differences between statistical approaches to examine null-effects. The increasing availability of 

easy-to-use software and online tools to perform equivalence tests, Bayesian estimation, and 

calculate Bayes factors make it timely and feasible to complement or move beyond traditional 

null-hypothesis tests, and allow researchers to draw more informative conclusions about null-

effects.  

Relevance for Patients: Conclusions based on clinical trial data often focus on 

demonstrating differences due to treatments, despite demonstrating the absence of differences is 

an equally important statistical question. Researchers commonly conclude the absence of an 

effect based on the incorrect use of traditional statistical methods. By providing an accessible 

overview of different approaches to exploring null-results, we hope researchers improve their 

statistical inferences. This should lead to a more accurate interpretation of studies, and facilitate 

knowledge generation about proposed treatments. 

Keywords: equivalence testing, hypothesis, bayes factors, bayesian estimation 

https://dx.doi.org/10.18053/jctres.03.2017S2.007


Journal of Clinical and Translational Research special issue on negative results 
10.18063/jctres.03.2017S2.007  

 

Most scientific research questions are stated in order to demonstrate the prediction that an 

effect or a difference exists. Does a drug work? Is there a difference between participants treated 

with antidepressants and patients going to psychotherapy? Common practice is to analyse the 

resulting studies using null hypothesis significance testing (NHST), for example by performing a 

𝑡𝑡-test or a Mann-Whitney-U-test, and to conclude that there is a difference between a control and 

a treatment group when a difference of zero can be statistically rejected. 

There are three scenarios in which the opposite research question, demonstrating the 

absence of an effect, or the absence of a difference between conditions, might be of interest: 

1. Especially in clinical research, it might be important to know if a cheaper or shorter 

treatment works just as well as a more expensive or longer treatment. Studies designed to 

answer such questions investigate non-inferiority (e.g., people in one group do not score 

worse than people in another group) or the statistical equivalence of different treatments 

(e.g., people in one group score the same as people in another group). 

2. We might design a study that has the goal to demonstrate the absence of an effect because 

we aim to falsify theoretical predictions about the presence of a difference. 

3. Even when we do not explicitly aim to test the absence of a theoretically predicted effect, we 

should be prepared to observe a non-significant finding in any study we perform. Either 

when examining a novel hypothesis, or when performing a study that was designed to 

replicate a previous finding, we should be able to statistically evaluate null-results. 

In all three cases statistical tools need to be applied that can provide an answer to the 

question whether we should believe, or act as if, a meaningful effect is absent. As [4] has laid out 
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in his editorial, there is increasing attention to the fact that ‘null results’ need to be published in 

order to have a coherent scientific body of results. Non-significant results are to be expected, 

even when examining a true effect, and publication bias (not submitting or publishing non-

significant resuls) will inflate effect size estimates in the literature [5,6]. By using statistical 

approaches that allow researchers to evaluate null-results, researchers will be able to learn more 

from their data, and publication bias can perhaps be mitigated. 

Researchers might want to know if a null-hypothesis is true, and therefore be interested in 

‘proving the null’. However, there are no statistical techniques that can unconditionally answer 

the question whether or not the null-hypothesis is true. As we will see below, statistical 

techniques that allow researchers to evaluate null results only allow conclusions about the null-

hypothesis in relation to some specified alternative hypothesis. The null-hypothesis can not be 

statistically evaluated in complete isolation. Furthermore, it is impossible in empirical research to 

‘prove’ a prediction, since theories and predictions are inherently probabilistic in an inductive 

empirical science. Rare events will happen, and thus the absence of an effect is always concluded 

based on a defined probability of making an error, or given a particular level of certainty. The 

aim of the present article is to give an overview of statistical methods suited to investigate ‘null 

effects’, and explain how to translate the statistical results from these methods into valid 

conclusions about the prediction that is tested. We provide a hypothetical example that is 

analyzed using four different methods, discuss how to interpret the results (as well as possible 

misinterpretations), and briefly explain which inferential frameworks these different methods are 

based on. 
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Investigating ‘Null Effects’ 

It is common practice in empirical research to rely almost exclusively on null-hypothesis 

significance testing (NHST) to investigate the presence of an effect. Because a null-hypothesis 

test can only reject the null (i.e. commonly the hypothesis of ‘no effect’), it cannot be used to 

inform us about the absence of an effect in the population. When we observe a non-significant 

effect (e.g., 𝑝𝑝 > 𝛼𝛼, where 𝛼𝛼 is the level of significance chosen ahead of data-collection), all we 

can conclude is that, assuming the true effect size in the population is zero, the observed effect 

size was not sufficiently different from zero to reject the null hypothesis without in the long run 

being wrong more often than a desired error rate. This does not rule out the possibility that the 

true population effect size differs from zero. It is also possible that the experiment might have 

had relatively low power to detect the true effect size, or – equivalently – a high probability of 

making a Type 2 error (not rejecting the null-hypothesis when a true effect is present in the 

population). 

Null-hypothesis significance testing answers a specific question (i.e., can we reject the 

null-hypothesis?). One can argue that in most studies without random assignment to conditions, 

and perhaps even in some studies with random assignment, it can be expected that the true 

(population) effect size is unequal to zero. Often an effect size of exactly zero (as assumed in the 

null hypothesis) is implausible [7]. For hypothesis testing, however, it is a useful model for 

comparison. When another question is of interest (i.e., can we conclude a meaningful effect is 

absent?), other statistical techniques should be used. Several statistical techniques have been 

developed to allow researchers to draw meaningful inferences about null-effects. Here, we will 

discuss equivalence testing, Bayesian estimation (i.e., the ROPE procedure) and Bayesian 
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hypothesis testing (i.e., the use of Bayes factors). We will demonstrate these different approaches 

using a fictional dataset from an imaginary study. 

Imagine, you want to investigate whether mindfulness meditation has an effect on lower 

back pain (LBP), which is an increasingly common problem among desk-working adults. In a 

fictional study patients with lower back pain are recruited and randomly assigned to either an 

eight week mindfulness meditation class (the treatment group) or an eight week waiting list 

condition (a passive control group). At the time of inclusion in the study and after the eight week 

study period self-reported lower back pain intensity is measured on a 100mm Visual Analogue 

Scale (VAS) [8,9]. The dependent variable to be analyzed is the difference between the VAS 

scores at the end and start of the study. The mean change over the eight week period between the 

treatment group and the control group is examined using a two-sample 𝑡𝑡-test.1 

The sample size of the study needs to be determined based on an a priori power analysis. 

Based on a discussion with experts in the field, the smallest effect size of the treatment that is still 

deemed worthwhile is Cohen’s 𝑑𝑑 = 0.30, and the study is designed to have a high probability of 

observing a statistically significant effect, if there is a true effect at least as large as this smallest 

effect size of interest. Assuming it is relatively easy to get people to enroll in the study, and 

further assuming the researchers want to prevent incorrectly concluding the two treatments differ, 

the alpha level is set to 0.01 and the desired power for the smallest effect size of interest is set at 

                                                        
1 The study design and analysis plan used herein is simplified for illustrative purposes. 

Practitioners might in reality consider a multilevel analysis to better account for different sources 

of variation [10]. The general recommendations in this paper also apply to more complex models. 
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90%.2 This means that if there is a true effect of 𝑑𝑑 = 0.30 or larger, we have at least 90% chance 

of observing a significant effect (in the long run). Based on the desired error rates, the power 

analysis indicates 332 patients per group should be enrolled in the study. 

 

Figure 1 Plot for the data of the imaginary study. Each dot represents a single case. Box plot 

shows median and 25% and 75% quartiles. Y-axis is dependent variable, i.e. Pain Intensity after 

either 8 weeks of meditation class or after 8 weeks of being on the waiting list. 

                                                        
2 Ideally, the alpha level is set based on a cost-benefit analysis of Type 1 and Type 2 errors, see 

[11]. 
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For the imaginary study we simulated random samples using R from two independent 

normal distributions.3 The fictional measurements collected from 664 participants are visualised 

in Figure . The mean change in self-reported lower back pain intensity on the 100mm VAS over 

the eight week period (and standard deviations) are −2.30 (14.77) in the Meditation group and 

−0.39 (15.13) in the control group. 

Null-Hypothesis Significance Test 

A common first question in experiments where participants are randomly assigned to two 

conditions is to examine whether we can statistically reject a difference between the groups that 

is exactly zero. This null hypothesis can be examined by performing a 𝑡𝑡-test with the chosen 

significance level of 𝛼𝛼 = 0.01. The two-sample Welch’s 𝑡𝑡-test (which does not assume equal 

variances) yields 𝑡𝑡(661.63) = −1.64, 𝑝𝑝 = .101. The 𝑝𝑝-value is not statistically significant, 

which means the estimated population difference in the data is not extreme enough to reject the 

hypothesis that the true changes in pain scores in both groups are the same. A non-significant test 

result does not mean that the null hypothesis is true. Non-significant results simply indicate that 

the data are not surprising if we assume there were no true differences between the conditions. 

This might be because there is no difference between the two populations from which the two 

groups are sampled, in which case a non-significant effect is expected with a frequency of 1 −

𝛼𝛼 = 0.99. But it is also possible that there is a difference, but due to sampling error, it was not 

observed, which should happen 10% of the time if the true effect size is 𝑑𝑑 = 0.30 (and more 

often if the difference between groups in the population is smaller than 𝑑𝑑 = 0.30). 
                                                        
3 The scripts for generating the simulated samples, including the chosen population parameters 

(which are usually unknown to the researcher), are included in the accompanying OSF repository. 
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It should be noted, that there are different frameworks for performing significance tests in 

frequentist statistics. Statistician Sir Ronald Fisher introduced the concept of significance tests. In 

the Fisherian test, a 𝑝𝑝-value is computed under a null-hypothesis. Importantly, in the Fisherian 

significance test no alternative hypothesis is specified. Jerzy Neyman and Karl Pearson extended 

on Fisher’s significance tests (much to Fisher’s dismay) by introducing the concepts of power 

and alternative hypotheses [12]. The goal of Neyman-Pearson significance testing is to warrant 

long-run error rates. This requires an a priori power analysis (as was done above) where an 

alternative hypothesis is specified and the long-run Type II error rate is chosen. In applied 

practice, a hybrid has evolved that combined aspects of the two paradigms of statistical testing 

[13]. For proper statistical inferences it is important to use the statistical methods the formally 

correct manner, in line with the theoretical basis upon which they were developed. In this section 

and the section on equivalence testing, we focus on the Neyman-Pearson approach of hypothesis 

testing and interpret the results of a statistical test as a dichotomous decision how to act for which 

we have decided on long-run error rates. 

A null hypothesis significance test cannot distinguish between the conclusion that an 

estimated population difference is too small to be considered meaningful, or an inconclusive 

result (i.e., the effect is not statistically different from zero, but also not statistically smaller than 

any effect you care about). This often leads researchers to believe non-significant results are not 

informative. While a non-significant result in a null-hypothesis significance test per se does not 

allow us to decide between the absence of a meaningful effect, or an inconclusive result due to 

low power, the data might be informative when analyzed with statistical tests that do allow 

researchers to draw more useful conclusions about null-effects. 
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In the past researchers were advised to interpret non-significant results by performing a 

sensitivity analysis, and report an effect size the study had high power to detect. For example, if a 

study had 90% power to detect an effect of 𝑑𝑑 = 0.30, researchers might conclude that if there is 

an effect, it would most likely be smaller than 𝑑𝑑 ≥ 0.30. This is referred to as the ‘power 

approach’ [14,15]. Based on the absence of a significant effect, researchers would conclude that it 

is unlikely that a true effect as large or larger than a specific size is present. However, the ‘power 

approach’ is superseded by the development of equivalence tests [14], and is no longer 

recommended. 

Equivalence Tests 

There is no statistical procedure that can confirm that the difference between two groups is 

exactly zero (beyond sampling the entire population, and finding that the observed difference or 

effect is exactly 0). However, it is possible to test whether an effect is close enough to zero to 

reject the presence of a meaningful difference. In this approach, researchers need to specify the 

difference that is considered too small to be meaningful, the smallest effect size of interest 

(SESOI). The SESOI is in clinical domains also referred to as the ‘minimal clinically important 

difference’ (MCID). A statistical test (very similar to the traditional 𝑡𝑡-test) is performed that 

examines whether we can statistically reject the presence of a difference as extreme, or more 

extreme, as the smallest difference we care about. If we can reject the presence of a difference 

(with a desired alpha level) we can act as if the difference is practically equivalent to zero. This 

procedure is known as equivalence testing [16]. 

For clinical scenarios in which pain intensity is measured using a 100mm VAS in patients 

with lower back pain, a difference of 9mm is considered to be a minimal clinically important 

difference. This is based on the finding that a difference of 9mm is the point where patients 
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indicate that they subjectively feel ‘slightly better’ instead of ‘equal’ [17]. Note that this is only 

one approach to determine a smallest effect size of interest, and other justifications for a smallest 

effect size of interest are possible [18]. Ideally, the SESOI should be informed by theory and 

previous research (such as meta-analyses or systematic reviews). The SESOI needs to be 

determined before collecting the data (similar to decisions about the sample size, the alpha level, 

and the desired statistical power). An informative study should be designed to have sufficient 

power both (i) to detect an effect that exceeds the SESOI and (ii) to demonstrate equivalence to 

zero or another specific value (thus rejecting the smallest effect size of interest). 

One way to test for equivalence is to perform the Two One-Sided Tests (TOST) 

procedure. A lower (𝛥𝛥𝐿𝐿) and upper (𝛥𝛥𝑈𝑈) equivalence bound is specified (e.g., a difference of -

9mm or 9mm on a 100mm VAS). A first one-sided test is performed to examine whether we can 

reject effects smaller than 𝛥𝛥𝐿𝐿 = −9mm, and a second one-sided test is performed to test whether 

we can reject effect larger than 𝛥𝛥𝑈𝑈 = +9mm. If both one-sided tests are significant, we reject the 

presence of a difference more extreme than ±9mm, and conclude that the group difference is 

statistically equivalent to zero, given the equivalence bounds that were chosen. 

https://dx.doi.org/10.18053/jctres.03.2017S2.007
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Figure 2 Visual representation of the equivalence test. Plotted is the confidence interval for the 

mean difference between the two groups. Based on our choice for an 𝛼𝛼 of sig.level the bold 

line visualizes the 98% confidence interval used for the TOST approach, while the thin 99% 

confidence interval is used for the traditinal significance test against the null hypothesis of zero 

difference. The equivalence test is significant, which can be inferred from the fact that the 98% 

confidence interval does not overlap with the equivalence bounds of −9mm and +9mm and we 

can reject the presence of a clinically meaningful effect. 

[19] created an R-package (TOSTER) and a spreadsheet to perform equivalence tests for 

𝑡𝑡-tests, correlations, proportions, and meta-analyses. Performing an equivalence test (again using 

Welch’s 𝑡𝑡-test) on our fictional data, with an 𝛼𝛼-level of 0.01, yields a significant result 

(𝑡𝑡1(661.63) = 6.11, 𝑝𝑝 < .001; 𝑡𝑡2(661.63) = −9.40, 𝑝𝑝 < .001). The result is vizualized in 

Figure , where the 98% confidence interval is plotted and compared to the equivalence bounds of 

−9mm and +9mm. The width of the confidence interval is 1 − 2𝛼𝛼 since two one-sided tests are 

https://dx.doi.org/10.18053/jctres.03.2017S2.007


Journal of Clinical and Translational Research special issue on negative results 
10.18063/jctres.03.2017S2.007  

performed, both of which need to be significant to conclude equivalence [16]. Using a Neyman-

Pearson approach to statistical inferences, in which the goal is to make dichotomous decisions 

while controlling error rates at a desired level, we can act as if the difference between the two 

groups is smaller than the minimal clinically important difference of ±9mm, without being 

wrong too often in the long run. It is important to note, that the confidence intervals here are only 

used to check whether the 98% confidence interval falls within the equivalence bounds. This is 

equivalent to performing the two one-sided tests (TOST) explained above. The interpretation of 

confidence intervals in a frequentist estimation framework has been critically discussed, e.g. by 

[20]. 

The present example represents the case of a non-significant result that is equivalent to 

zero. It should be noted, that the equivalence testing approach also allows for significant and 

equivalent outcomes: If a much larger sample size had been collected and the same mean 

difference was observed, the 99% confidence would no longer overlap with zero, which would 

allow us to reject the null-hypothesis. With both the traditional significance test as well as the 

equivalence test being significant, we can conclude a mean difference that is statistically different 

from zero, while at the same time being practically insignificant. 

Accessible introductions to equivalence testing are available [14,18,19], and equivalence 

tests can be performed in R, using a spreadsheet [19], or using the free software jamovi. We 

provide scripts for R [1] and jamovi [3] to reproduce the analyses and results in this paper as 

supplemental material. 
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Bayesian estimation 

Frequentist statistics, which underly null-hypothesis significance tests and equivalence 

tests, have the goal to control error rates in the long run. Researchers can’t know whether the 

conclusion made for any single study is one of these errors. Bayesian statistics allows researchers 

to make statements about the probability of single events and specific hypotheses, given the 

observed data because it uses a different understandings of ‘probability’. The debate about which 

definition of probability is ‘correct’ or more adequate has lead to a debate among statisticians and 

philosophers of science that has been going on for many decades. Luckily, researchers don’t need 

to choose a side (unless they want to), because both approaches can be used side-by-side when 

analysing data. Excellent introductions to Bayesian statistics from an applied perspective on 

statistics can be found in [21] or [22]. 

Bayesian statistics is best understood in the context of statistical modelling. A statistical 

model is a mathematical description of the probability of data. In Bayesian statistics a model 

consists of three different parts. The first part is called a prior distribution: For each parameter 

we choose a probability distribution that describes expectations about possible parameter values. 

This prior can be understood as our ‘belief’ before seeing the data (hence the prior). This 

terminology already highlights the distinction between the frequentist and the Bayesian 

understanding of probability: While frequentists consider ‘probability’ as a statement about long-

term frequencies of events, Bayesians think of ‘probability’ as a ‘degree of belief’. This 

subjective interpretation is easily explained – and very intuitive to some – but not without 

criticism. Even among Bayesians there is disagreement about the subjective nature of the prior. 

[23] provides one accessible commentary on this debate. 
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As the second part of a Bayesian model, we take the observed data into account through a 

likelihood function, and calculate a posterior distribution through the use of Bayes’ theorem. In 

mathematical notation this is 

𝑃𝑃(𝜃𝜃|𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷) =
𝑃𝑃(𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷|𝜃𝜃) ⋅ 𝜋𝜋(𝜃𝜃)

𝑃𝑃(𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷)
 

where 𝜋𝜋(𝜃𝜃) is the prior distribution for our parameter 𝜃𝜃, and 𝑃𝑃(𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷|𝜃𝜃) is the likelihood 

function of the model. 𝑃𝑃(𝜃𝜃|𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷) is the posterior distribution of the parameter after seeing the 

data (i.e. the conditional probability of the parameter values given the observed data). The 

posterior distribution is thus – analogous to the prior distribution – our belief about different 

parameter values for 𝜃𝜃 after having seen the data. When moving from a prior to a posterior 

distribution credibility is reallocated from the prior distribution to a posterior distribution that 

represents credibility informed by both the prior information and the data. If the prior distribution 

is accepted to represent a valid allocation of belief, the posterior distribution represents rationally 

updated belief through the observed data. The term 𝑃𝑃(𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷) in the denominator is a normalizing 

constant in order for the posterior 𝑃𝑃(𝜃𝜃|𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷) to be a proper probability distribution. We will 

later refer to it in the section about Bayes factors as the marginal likelihood of the model (since it 

is the likelihood marginalized over all parameter values), also called model evidence. 

[24] introduced a pre-defined Bayesian model that can be used to draw inferences about 

the estimated differences between two independent groups. This procedure provides researchers 

with a simple and easy-to-use test to evaluate the data in a Bayesian estimation framework. When 

using a Bayesian statistical model, samples from the posterior distribution are generated which 

can be used to make inferences about the data. One way to summarise the posterior distribution is 

to provide intervals of parameter values that are considered to be most credible. In Bayesian 
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statistics Highest Density Intervals (HDI) are commonly used. For example, a 89% Highest 

Density Interval contains the values which, based on the statistical model used (including the 

prior distribution), are considered the 89% most credible. For the pre-defined model by [24] the 

posterior samples can be generated and summarised using the ‘BEST’ R-package [25] or a web-

app [26]. Importantly, even if only summaries are presented such as means, standard deviations, 

or credibility intervals, the whole posterior distribution is available to provide the statistical 

inference [27]. 

In our imaginary study where we compare an 8-week meditation class to patients on a 

waiting list we find a 95% Highest Density Interval (HDI) of [−4.24; 0.32] for the difference in 

pain intensity between the two conditions. This means that the 95% most credible values for the 

difference in means, given our model, which incorporates both the prior information and the 

observed data, lie between -4.24mm and 0.32mm. Figure  visualizes this result. 

Some differences between the confidence interval reported above and the Bayesian HDI 

are to be expected. The prior affects the width and location of the HDI in Bayesian estimation, 

and whenever the priors that are used for the model are not uniform, an HDI and a confidence 

interval will differ to a certain extent. With sufficient information from the observed data, the 

collected data will outweigh the prior, but with smaller amounts of data, it can be advisable to 

explore the impact of different priors on the inference. In the BEST model, the priors are not 

uniform but chosen to have minimal impact on the inferences, so even if the number of 

observations is relatively small, the prior should not have too much influence on the results [24]. 

The posterior distribution can be used to answer several other questions as well. Besides 

the HDI, we can find the most credible value for the difference between the two groups, which 
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would be the posterior mode, or Maximum A Posteriori estimate (MAP), which is -1.81 (and 

differs slighty from the frequentist estimate of the difference due to the prior). When one aims to 

make a dichotomous decision about parameter values based on the posterior distribution, [27] 

propose to define a region of practical equivalence (ROPE) which is identical to setting 

equivalence bounds based on a smallest effect size of interest as laid out above. The ROPE 

procedure uses the following decision rule [28]: 

If the 95% HDI of the [parameter’s posterior distribution] falls completely outside the ROPE than reject the null 

value, because the 95% most credible values of the parameter are all not practically equivalent to the null value. If 

the 95% HDI of the [parameter’s posterior distribution] falls completely inside the ROPE then “accept” the null 

value for practical purposes, because the 95% most credible values of the parameter are practically equivalent to 

the null value. Otherwise remain undecided. 

By comparing the 95% HDI with the region of practical equivalence from 𝛥𝛥𝐿𝐿 = −9mm to 

𝛥𝛥𝑈𝑈 = +9mm, based on the same equivalence bounds as before, researchers can conclude 

equivalence when the HDI lies within the region of practical equivalence (or between the 

equivalence bounds). Because the 95% HDI ([−4.24; 0.32]) lies well within those bounds (as can 

be seen in Figure ), we declare a difference of exactly zero to be accepted for practical purposes 

based on the decision rule above. We do not, however, accept or reject any other specific value 

within the ROPE. In the vocabulary of Bayesian statistics, using a decision rule on a posterior 

distribution of a single model does not constitute “hypothesis testing”. The term “Bayesian 

hypothesis testing” refers strictly to the use of Bayes factors for model selection, which we will 

discuss in the next section. An alternative way to investigate practical equivalence using a 

Bayesian posterior distribution would be to examine the probability mass contained in the ROPE 

[29]. It is important to highlight that the basis for inferences is the full posterior distribution. 
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Thus, it is up to the researcher to decide whether they want to make a dichotomous decision 

about a single parameter value or rather make a probability statement (see Discussion). 

The Bayesian ROPE procedure is quite similar to equivalence tests, but there are several 

important dinstinctions. In the Bayesian approach we can make statements about which values 

we believe are most credible, based on the data and the model, while in frequentist statistics we 

make dichotomous decisions based on long-run error rates. Frequentist statistics is concerned 

with frequencies of events in the long run. Null-hypothesis significance tests and equivalence 

tests as discussed previously aim to control the rate at which incorrect conclusions are drawn 

about the presence or absence of effects at pre-specified levels. As a consequence, the width of a 

confidence interval is directly related to the chosen 𝛼𝛼 level. In the Bayesian approach, on the 

other hand, no statements about rates of decision errors can be made without additional 

assumptions and analyses. [27] use a 95% interval because of the convention to set the 

significance level at 5%, but the width of the HDI should only be seen as a useful summary of the 

complete posterior distribution, and is not related to the 5% Type 1 error rate of the confidence 

interval.4 

                                                        
4 Note, however, that in some practical cases frequentist confidence intervals and Bayesian 

credibility intervals yield the same range of values [30]. 
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Figure 3 Histogram with superimposed density estimate of samples from posterior distribution 

for the Bayesian 𝑡𝑡-test model [24]. Thick bar is the 95% Highest Density Interval, indicating the 

95% most credible values for the mean difference between the two groups. The square in the 

interval is the Maximum A Posteriori estimate, i.e. the most credible value from the posterior 

distribution. 

Bayesian hypothesis testing with Bayes factors 

The ROPE procedure uses Bayesian statistics to estimate the parameter values that are 

most credible and then uses a decision rule to accept or reject specific values. Bayesian statistics 

can also be used to directly test two competing models. Hypothesis testing can be considered as a 

special case of model selection, where two specific hypotheses are expressed in terms of 

competing models. One way to perform this type of model selection in Bayesian statistics (or 

Bayesian hypothesis testing) is to compare the marginal likelihoods of two models 𝑀𝑀0, the null 

model, and 𝑀𝑀1, the alternative model, and quantify the relative model evidence in terms of a ratio: 
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BF01 =
𝑃𝑃(𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷|𝑀𝑀0)
𝑃𝑃(𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷|𝑀𝑀1)

 

This ratio is called a Bayes factor and allows statements about relative model evidence. A 

Bayes factor of BF01 = 4.2 can be interpreted as ‘the data provide 4.2 times more evidence for 

𝑀𝑀0 than for 𝑀𝑀1.’5 Bayes factors indicate by what amount the relative belief in the models should 

shift according to rational Bayesian belief updating: 

𝑃𝑃(𝑀𝑀0|𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷)
𝑃𝑃(𝑀𝑀1|𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷)

⏟
Posterior Odds

=
𝜋𝜋(𝑀𝑀0)
𝜋𝜋(𝑀𝑀1)

⏟
Prior Odds

×
𝑃𝑃(𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷|𝑀𝑀0)
𝑃𝑃(𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷|𝑀𝑀1)

⏟
Bayes factor

 

The most common approaches to calculating Bayes factors model the null-hypothesis as a 

point, with an alternative model that distributes the probability of the true value across a range of 

possible values. This choice for a null-model is generally similar to frequentist hypothesis testing, 

where the null hypothesis is commonly also a point hypothesis of exactly zero. For Bayes factors 

that closely resemble traditional statistical tests, the two competing models are distinguished by 

different prior distributions for a parameter (usually a test statistic). 

Defining a reasonable alternative model is an important part of calculating a Bayes factor. 

There are different ways in which the alternative model can be specified. One way is to use 

researchers’ beliefs or expectations of theoretical predictions. Another way would be to use data 

observed in previous studies to inform the alternative model [31,32]. 
                                                        
5 The subscript in BF01 specifies the relative evidence for the null compared to the alternative, 

but a Bayes Factor can also be expressed as the relative evidence for the alternative compared to 

the null, or BF10 = 1/4.2 = 0.24. 
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Figure (D) illustrates the two models compared when calculating a Bayes factor. In the 

figure 𝑀𝑀0 is represented by a point-null hypothesis and 𝑀𝑀1 is represented by a distribution that 

assumes small effect sizes are more likely than large effect sizes, but which is not very restrictive 

and assigns probabilities to a wide range of possible values. 

A common criticism on Bayes factors is that they are much more sensitive to the 

specification of the prior than Bayesian model estimation. While the data quickly overwhelms the 

prior in a Bayesian estimation framework (such as the ROPE procedure), the priors in a Bayes 

factor have much more weight. It is important to note, however, that priors have different 

purposes in the two approaches: In Bayesian models for estimation, the priors are used as a 

device for regularization and shrinkage of parameter estimates. This can be driven by subjective 

beliefs or statistical considerations (see discussion on subjective and objective use of priors 

above). For Bayes factors, on the other hand, priors should represent the predictions of a theory. 

Therefore, researchers have cautioned against the use of ‘default’ priors when calculating Bayes 

factors [33], which are a compromise between general expectations about effect sizes and useful 

mathematical properties [34], but these default model specifications should only be chosen if they 

actually reflect a useful alternative model given the research question. Moreover, Bayes factors – 

very much like 𝑝𝑝-values – do not convey information about the magnitude of an effect or the 

uncertainty in its estimation. See [35] for additional criticisms on Bayes factors. 

Bayes factors can be used to examine null effects by quantifying the relative evidence in 

the data for a null-model compared to an alternative model. In the Bayes factor calculation for 

our hypothetical data we wanted the prior for the alternative model to represent our expectation 

about the presence of a true effect. If our 8-week meditation class reduces pain intensity in a 

100mm VAS scale compared to the active control condition, we expect it to be similar in size to 
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other non-pharmaceutical interventions. [36] performed a meta-analysis of different 

psychological interventions on pain intensity in patients with chronic lower back pain, and 

provided an estimated meta-analytical effect size of 𝑑𝑑 = 0.62 (95% CI: [0.25; 0.98]) when 

comparing the effect of cognitive-behavioral therapy (CBT) against a waiting list condition. 

Therefore, we calculate a Bayes factor based on the expectation that a mindfulness meditation 

intervention might have similar effect size. 

We specify an alternative model with a normal prior distribution centered on 0.62 with a 

standard deviation of 0.37 (calculated from the confidence interval): 𝑀𝑀1:  𝛿𝛿 ∼ 𝒩𝒩(0.62,0.37). 

The 𝑀𝑀1 model is compared against the null model 𝑀𝑀0 with a prior that has its point mass at 0 

(i.e. a point null hypothesis). 
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Figure 4 Visual representation of the Bayes factor as Savage-Dickey ratio [37]: The Bayes factor 

can be understood as the ratio between the posterior and the prior at 𝛿𝛿 = 0 (indicated by the two 

grey dots). 

A Bayes factor for a 𝑡𝑡-test yields BF01 = 2.95 [38]. We can thus conclude that the data is 

2.95 times more in favour of the null model compared to the informed alternative model that we 

specified. The Bayes factor can be represented visually as in Figure : It shows the ratio between 

the height of the prior and the height of the posterior distribution at 𝛿𝛿 = 0, the point of interest 

for the null hypothesis. This ratio is called the Savage-Dickey ratio [37]. Although Bayes Factors 

can be interpreted as a continuous measure of model evidence, thresholds for interpreting Bayes 

factors have been proposed by [39] which might be useful for researchers who begin to report 

and interpret Bayes factors. A Bayes factor of 1 indicates the data are equally likely under both 

models. Bayes factors between 1 and 3 constitute mere ‘anecdotal’ evidence, which is considered 

‘worth not more than a bare mentioning’ [39]. Thus, although the data support the null model 

over the alternative model specified by the prior, there is no good reason to conclude in favor of 

either model – at least if not either model is much more reasonable than the other a priori without 

respect to the data (we extend the discussion on prior belief in each model below). Stronger 

model evidence would be desirable, which means more data need to be collected [40]. 

The difference between the result of the Bayes factor analysis, the equivalence test, and 

the ROPE procedure reported earlier has several reasons. Most importantly, the questions that 

were asked differed across the tests. The equivalence test sought to reject an effect specified by 

and upper and lower equivalence bounds of ±9mm (see Figure (B)), and the ROPE procedure 

examined wether the 95% HDI fell within the region of practical equivalence (Figure (C)). The 

Bayes factor investigated whether the data was more in line with a null model or an alternative 
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model specified based on expectations derived from previous studies. Researchers need to be 

aware of the precise question they want to ask from the data and the method they use to do 

answer their question. In order to draw informative inferences from the data, it is crucial that a 

statistical test is selected in which alternative hypotheses are defined that answer a question of 

interest. 

The Bayes factor tells us how much our belief in the null model versus the alternative 

model should change. It does not, however, directly tell us how likely the null hypothesis is 

because it is a relative measure. As can be seen in the equation above, to calculate the posterior 

odds of the two competing hypotheses, a researcher needs to combine the Bayes factor with prior 

probabilities for the two hypotheses. There is rarely an objective answer to the question of prior 

odds, and researchers are free to hold different beliefs. If we feel that the two models are equally 

likely a priori, i.e. the prior odds are 1:1, the Bayes factor would be equal to the posterior odds. 

If, on the other hand, we feel that the null hypothesis is four times more likely than the alternative 

hypothesis (before seeing any data from the study) and the Bayes factor is BF01 = 2.95, we 

should believe that the null model is about 11.78 (4 times 2.95, with a small difference due to 

rounding) more likely than the alternative after seeing the data. Since different researchers can 

have different beliefs about the prior odds of two hypotheses, Bayes factors are commonly 

reported without a reference to prior or posterior odds and the reader is assumed to update their 

own priors. If a researcher accepts the prior distributions for the parameters in the models 

compared in the Bayes factor, the Bayes factor contains the necessary information to update their 

own prior odds and make an inference – but the Bayes factor is by itself not sufficient to reach a 

conclusion. Prior odds are a necessary part of the inferential method when using Bayes factors. 
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Figure 5 Illustration of the different hypotheses under investigation [18]. (A) The classic two-

sided significance testing aims to reject a point null hypothesis (here an effect size of exactly 

zero). (B) In equivalence test, the 𝐻𝐻0 of no equivalence is tested (grey region), so the white area 

is the rejection region. (C) For the Bayesian estimation approach, the 95% highest density 

interval of the posterior is compared against the Region of Practical Equivalence (ROPE) 
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between 𝛥𝛥𝐿𝐿 and 𝛥𝛥𝑈𝑈. (D) For the Bayes factor, two models are compared that differ in their prior 

distributions: The 𝑀𝑀0 prior is a point mass of 1 at an effect size of 0, the alternative model 𝑀𝑀1 is 

here plotted as a Normal distribution as an example. Note, that other alternative models can be 

used, e.g. centered on a value derived from theory or previous studies (see Figure 4). 

 

Discussion 

There are good reasons wanting to test whether meaningful effect sizes or theoretically 

predicted differences are absent in data that have been collected to examine a hypothesis. In 

recent years, statistical techniques such as equivalence testing, Bayesian estimation, and Bayesian 

hypothesis tests have become more widely available through open source software tools such as 

R [1], jamovi [3], and JASP [2], and accessible introductions with detailed examples [18,21,22]. 

These statistical tools allow researchers to move beyond merely testing whether the null 

hypothesis can be rejected in a null-hypothesis significance test. These complementary statistical 

approaches invite researchers to more carefully consider and specify which effect sizes they 

predict when there is a true effect. A statistical evaluation of the observed data should allow for 

informative conclusions about null effects, and when planning a study and performing statistical 

inferences researchers should more explicitly consider the possibility that the null hypothesis 

could be true. This implies that an informative study should be designed that allows one to draw 

conclusions about both the presence and the absence of a meaningful effect. We hope that the use 

of correct statistical approaches to evaluate null-results will prevent the common mistake to 

interpret a 𝑝𝑝-value larger than the alpha level (e.g., 𝑝𝑝 > .05) as the absence of an effect. 
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In the context of clinical trials, the repeated use of equivalence and non-inferiority tests 

can have negative effects on the conclusions derived from such research. That is, if sampling and 

measurement error are large and the equivalence region is rather wide, repeated studies 

comparing non-inferiority of different treatments or doses might favor treatments which are 

ineffective or even harmful [41,42]. A phenomenon that has been termed ‘bio-creep’. The 

prevalence of bio-creep is a matter of ongoing research; [43] come to the conclusion, that it is not 

a major cause of concern in practice (at least on average). Awareness of the issue is nevertheless 

important and should even more underline the need to carefully think about which effect sizes are 

deemed meaningful, beyond simply comparing the results of studies with each other. 

Possible Misconceptions 

Probability is not intuitive, and every statistical technique runs the risk of being 

misinterpreted. The techniques discussed in this article have great potential to improve statistical 

inferences, but it is important to prevent misinterpretations. When performing a null-hypothesis 

significance test, a non-significant result can not be used to conclude a meaningful effect is 

absent. To conclude this, one has to specify and test against whichever effect one defines to be 

‘meaningful’. An equivalence test can be used to statistically reject effects as large or larger than 

the smallest effect size of interest, with a long-term error rate. It can not be used to conclude the 

effect is exactly 0, or to reject the presence of any effect. If we conclude statistical equivalence, 

we can reject the presence of effect sizes more extreme than the smallest effect size of interest 

with a known error rate, but we can not conclude the true effect is exactly zero – there might be a 

true but small effect. For this reason, conclusions based on equivalence tests must always specify 

the equivalence bounds that are used, and it is recommended to combine equivalence tests with 

null-hypothesis significance tests (which can also help to identify effects that are significant and 
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equivalent, or practically insignificant differences). Thus, a statement such as ‘the difference was 

statistically equivalent to zero’ is imprecise, and a more precise interpretation is ‘we could reject 

effect sizes more extreme than the equivalence bounds of −0.4 and 0.4’. 

When calculating the posterior distribution in Bayesian statistics, a prior is combined with 

the observed data. Any statements about the posterior distribution are not just based on the data, 

but also conditional on the model. The model includes the prior distributions which can be 

chosen rather freely. The prior distribution may represent a researchers beliefs prior to observing 

the data, but can also be used to regularise estimates or incorporate information from previous 

studies. It is thus important to explicitly state the model setup and provide a justification for the 

choice of a prior distributions when using Bayesian estimation. As with other measures of 

uncertainty such as confidence intervals, Bayesian credibility intervals are not guaranteed to 

contain true parameter values. The credible intervals contain values which are deemed credible 

based on the prior and the observed data with a specified posterior probability. 

Finally, when calculating Bayes factors, it is important to realize that they provide relative 

evidence for two specified models. A Bayes factor can indicate strong support for a null model 

relative to an alternative model, but both models can be wrong. The Bayes factor gives a relative 

indication of whether the data is more in line with the null-model or the alternative model. 

Differences between Inferential Frameworks 

All statistical methods give rise to probabilistic inferences. Rare events happen, and 

unlikely outcomes can be observed. Probabilistic methods can never be used to know with 

certainty that an effect is present or absent. Thus, none of the statistical techniques presented in 

this paper are capable of proving the null. After analyzing their data, researchers might be 
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tempted to conclude ‘there was no effect’, but none of the statistical approaches discussed here 

allow for such a conclusion. It is important to understand the questions that the different 

statistical techniques described in this article provide an answer to. 

Equivalence tests are used to make dichotomous conclusions to guide behavior, while 

controlling error rates in the long run. The goal of such a test is to reject the presence of effects 

large enough to matter, without being wrong too often. Any single study might lead to an 

incorrect conclusion, but theories that are correct should make predictions that are confirmed 

with expected error rates in lines of research. Although single studies are never sufficient to draw 

strong conclusions in science, this idea is especially central in frequentist statistics. 

Bayesian statistics focus more strongly on quantifying beliefs or making statements about 

which values are deemed credible. In the case of Bayesian estimation, the focus lies on allocating 

credibility to parameter values (such as effect sizes or differences between groups), which can 

result in statements about degrees of belief. In the case of Bayes factors, the focus lies on 

quantifying the rational change in belief in a null-model or an alternative model, which is also 

termed statistical evidence [44]. Although there are many different flavors of Bayesian statistics, 

a strength of these approaches lies in drawing conclusions that incorporate pre-existing 

information in statistical inferences. Whether quantified beliefs or any other statistical inference 

corresponds with reality depends on how accurate model assumptions are. This is relevant for 

Bayesian models and the chosen prior distributions as well as for model assumptions in 

frequentist statistics. 

In Bayesian estimation the prior can be used to shrink or regularise parameter estimates. 

Through Bayes’ theorem, priors provide an automatic way to implement shrinkage in a statistical 
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model. Especially in small samples and more complex models, this avoids overfitting the data 

and can lead to better estimates for out-of-sample inferences and predictions [45]. With more data 

parameter estimates become more precise and the prior has less influence on the posterior 

distribution, thus providing less shrinkage as is desirable in most models. Finally, the Bayesian 

approach to statistical modelling is very versatile and can be used even in complex models such 

as hierarchical generalized models. Bayesian hierarchical or multilevel models are particularly 

useful in clinical research, for example, when using clustered samples or repeated measurements 

[45–47]. 

Conclusion 

Null hypothesis significance testing has been critised because it is often misused and 

misunderstood [48]. Researchers who only rely on null-hypothesis significance tests limit 

themselves in only asking the question whether the null-hypothesis can be rejected. By adding 

statistical techniques such as equivalence testing, Bayesian estimation, and Bayes factors to ones 

repertoire, researchers can substantially improve the inference they can draw from null-effects by 

asking more relevant questions. Being able to demonstrate the absence of effects is important in 

all major approaches to philosophy of science [49]. When researchers only publish scientific 

findings that statistically reject null effects, the scientific literature is biased, which hinders the 

accumulation of scientific knowledge [5,6]. By using statistical approaches that can provide 

informative conclusions about null effects, researchers might not be able to ‘prove the null’, but 

they can substantially improve their statistical inferences about null-effects. 
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