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Antibacterial photodynamic therapy (APDT) has drawn increasing attention from the scientific society for 
its potential to effectively kill multidrug-resistant pathogenic bacteria and for its low tendency to induce 
drug resistance that bacteria can rapidly develop against traditional antibiotic therapy. The review summa-
rizes the mechanism of action of APDT, the photosensitizers, the barriers to PS localization, the targets, the 
in vitro-, in vivo-, and clinical evidence, the current developments in terms of treating Gram-positive and 
Gram-negative bacteria, the limitations, as well as future perspectives. 
Relevance for patients: A structured overview of all important aspects of APDT is provided in the context 
of resistant bacterial species. The information presented is relevant and accessible for scientists as well as 
clinicians, whose joint effort is required to ensure that this technology benefits patients in the 
post-antibiotic era. 
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1. Antibacterial photodynamic therapy in the 
‘post-antibiotic’ era 

The multidrug resistance of pathogenic bacteria has become 
a serious threat to public health. The World Health Organization 
released a report in April 2014 warning that the “post-antibio-
tic” era, “in which minor injuries and common infections can 
kill,” is approaching. Gram-positive and Gram-negative su-
perbugs such as Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Enterobacter species, the so-called “ESKAPE” 
pathogens, are capable of resisting almost all types/classes of 
antibiotics. Finding novel approaches to combat multidrug- 
resistant bacteria has therefore become increasingly important. 

Antibacterial photodynamic therapy (APDT) is a promising 
approach to treat bacterial infections that are recalcitrant to 
antibiotics. APDT is based on the photosensitization of bacte-
ria with exogenous compounds referred to as photosensitizers 
(PSs). Cell death is subsequently triggered by lethal oxidative 
stress that is induced by irradiation of the infected area with 
light of a resonant wavelength, typically in the visible wave-
length range (400-700 nm). The irradiated ground state PS, 
located in the bacteria or at the bacterial surface, absorbs the 
light and is excited to its singlet state (1PS). The excited state 
electrons undergo intersystem crossing to a lower-energy but 
longer-lived triplet state (3PS), from which reactive oxygen 
species (ROS) or reactive molecular transients are generated 
[1]. The photochemical reactions proceed via a type I or type II 
mechanism and require close proximity between the 3PS and 
substrate. Type I reactions generate radicals following triplet 
state electron transfer from the 3PS to a substrate. A common 
terminal substrate for type I reactions is molecular oxygen, 
leading to the production of superoxide anion (O2

•‒). In a bio-
logical environment, O2

•‒ is relatively innocuous but can give 
rise to more cytotoxic ROS such as hydroxyl radicals (•OH) 

and carbonate radical anions (CO3
•‒) that oxidize biomolecules 

and cause cell damage and ultimately death [1-3]. In type II 
reactions, the excited PS reacts directly with molecular oxygen 
(O2) and forms the highly reactive singlet oxygen (1O2) via 
3PS→O2 energy transfer. Type I and type II reactions (Figure 1) 
are believed to occur simultaneously during APDT and the 
ratio of the occurrence between the two is dependent on the 
type of PS that is administered and the microenvironment in 
which APDT is applied.  

APDT has several advantages over antibiotics. The first im-
portant advantage is that APDT is considered triply site-spe-
cific due to (1) preponderant association/uptake of PSs by the 
target cells compared to non-target cells, (2) the pharmacody-
namic inertia of non-irradiated PSs, as well as (3) the site-con-
fined irradiation of the infected area. Consequently, (systemic) 
toxicity is largely absent outside the irradiated, PS-replete zone. 
Another important advantage of APDT over antibiotics is that no 
resistance is developed against the PSs. In that respect, repea-
ted treatment with APDT did not lead to selection of resistant 
strains [4]. This is due to several reasons. First, the drug-light 
interval (the time between administration of the PS and PDT) 
is too short for bacteria to develop resistance. Second, PSs 
typically exhibit no dark toxicity, as a result of which bacteria 
do not have to engage adaptive survival mechanisms against 
the PSs. It is also difficult for bacteria to ‘sense’ that the oxida-
tive stress emanates from the otherwise non-toxic PS, so any 
metabolic adaptations are directed elsewhere (e.g., antioxidant 
defense machinery). Third, the cells are too damaged after 
PDT, disabling them to confer cross-generation adaptivity. 
Lastly, APDT does not target a single site in bacteria, much 
different from conventional antibiotics. The ROS generated by 
APDT target various bacterial cell structures and different 
metabolic pathways [5]. These reasons underlie the potential 
utility of APDT in combatting resistant strains in a non-to- 
minimally invasive and patient-friendly manner. 

 

http://dx.doi.org/10.18053/jctres.201503.002


142 Liu et al. | Journal of Clinical and Translational Research 2015; 1(3): 140-167 
 

Distributed under creative commons license 4.0        DOI: http://dx.doi.org/10.18053/jctres.201503.002 

  

 
 

Figure 1. Type I and type II mechanism of ROS generation by photodynamic therapy. Abbreviations: PS, ground state photosensitizer; 1PS, photosensitiz-
er in first excited state; 3PS, triplet state photosensitizer; e‒, electron; O2•‒, superoxide anion; •OH, hydroxyl radical; H2O2, hydrogen peroxide; 3O2, triplet 
state oxygen (molecular oxygen); 1O2, singlet oxygen. 

 
In light of the spread of resistant ESKAPE pathogens and 

the potential utility of APDT, this review summarizes the 
mechanism of action of APDT, the PSs used for APDT, PS 
pharmacokinetics and its cellular targets, the in vitro-, in vivo-, 
and clinical evidence for the utility of APDT, the status quo of 
APDT for both Gram-positive and Gram-negative bacteria, 
and potential strategies to optimize APDT. As the literature on 
APDT has expanded dramatically in recent years, the present 
review focuses mainly on the most recent information and 
novel developments. For more in-depth information on APDT, 
readers are referred to Hamblin et al. [6].  

2. Photosensitizers for antibacterial photodynamic 
therapy 

The efficacy of APDT relies chiefly on an optimal combi-
nation of PS and light. The ideal PS for APDT should exhibit 
high phototoxicity, low dark toxicity, high quantum yield of 
1O2 or free radicals, preferential association with bacteria ver-
sus host mammalian cells, suitable pharmacokinetics, and ac-
cumulation in bacteria or binding to the bacterial cell envelope 
[7]. PS binding to the bacterial cell and uptake are dependent 
on the bacterial species. Due to the distinctive structure of the 
cell envelope, Gram-positive pathogens are much more sus-
ceptible to anionic and neutral PS because of the thick but po-
rous peptidoglycan layer on the outer surface. Gram-negative 
bacteria are less prone to take up exogenous compounds due to 
the extra outer membrane and the permeability barrier impart-
ed by lipopolysaccharides. 

Preferably, APDT should be performed with cationic PSs in 
both Gram species. Cationic phenothiazinium-, phthalocya-
nine-, and porphyrin derivatives have been shown to signifi-
cantly enhance phototoxicity in both Gram-positive and Gram- 
negative species [8-10]. It should be noted that, in some cases, 
negatively charged or neutral PSs at high concentration were 

more effective than cationic PSs [11,12]. Although not abun-
dantly taken up by the bacteria, the PSs accumulate extracel-
lularly in close proximity to the cell membrane and membrane 
constituents. The generation of reactive intermediates in close 
vicinity of cell structures either causes direct oxidation of these 
components or allows transmembrane diffusion of reactive 
intermediates and corollary oxidative damage to various intra-
cellular targets [13]. In most instances, APDT predominantly 
proceeds via type II processes. However by comparing PSs 
that tend to undergo either type I or type II mechanism, Huang 
et al. reported that Gram-negative species are more susceptible 
to •OH than 1O2 [1]. A type I reaction is therefore favored 
when targeting Gram-negative species. 

The most extensively studied classes of PSs and their phys-
ical and chemical properties are presented in Table 1. The ge-
neric structure of each PS class is shown in Figure 2. Many 
PSs initially exhibited high inactivation efficacy against Gram- 
positive bacteria in their native form. However, these PSs were 
later modified structurally (e.g., addition of cationic functional 
groups) to improve therapeutic efficacy in Gram-negative spe-
cies.  

2.1. Phenothiaziniums 

Phenothiazinium and its derivatives (Table 1), which in-
clude methylene blue (reviewed in [14]), Rose Bengal, and 
toluidine blue O, are a class of first-generation PSs that were 
initially investigated for PDT of solid cancers. These PSs are 
commonly employed in APDT because of their high binding 
affinity for both Gram-positive and Gram-negative bacteria 
such as methicillin-susceptible and methicillin-resistant S. au-
reus (MSSA and MRSA) and E. coli [15,16]. Phenothiazinium 
PSs are pharmacodynamically interesting because this class of 
PSs exhibits inherent toxicity to E. coli cells, also under dark 
conditions [17]. With respect to PDT, it has been   
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Figure 2. The structure of some photosensitizers covered in this review. Phenothiazinium photosensitizers are listed separately in Table 2. 
 

shown that phenothiazinium targets cytoplasmic DNA [18]. 
Methylene blue derivatives (structures are summarized in 

Table 2) such as new methylene blue, dimethyl methylene blue, 
and methylene green were developed with different functional 
substituents and shown to have improved effectiveness of kill-
ing bacteria. As indicated previously, increasing the positive 
charge on methylene blue correlated positively with increased 

APDT efficacy than native methylene blue [19,20], mainly 
because substitution with cationic functional groups improved 
the binding and uptake of the PS by bacteria relative to the 
parent structure [19-21]. For example, Felgentrager et al. re-
vealed that derivatization of methylene blue with tertiary amm-
onium substituents increased the uptake by microbial cells due 
to the fact that these substituents imposed a greater cationic 

 
Table 2. Structures of common phenothiazinium photosensitizers 

                           
a                                      b                                      c 

Phenothiazinium R1 R2 R3 R4 R6 R7 R8 R9 

Methylene blue (MB)a H H NMe2 H H NMe2 H H 

Methylene green (MG)a H H NMe2 NO2 H NMe2 H H 

Rose Bengal (RB)b − − − − − − − − 
EtNBSc H H NMe2 H H NHEt − − 

EtNBS-COOHc H H NMe2 H H NHC3H6O − − 

New methylene blue N (NMBN)a H Me NHEt H H NHEt Me H 

Dimethyl methylene blue (DMMB)a Me H NMe2 H H NMe2 H Me 

Toluidine blue O (TBO)a H H NMe2 H H NH2 Me H 
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charge in a pH-equilibrated aqueous solution, and therefore 
more avid bacterial cell binding, compared to primary or sec-
ondary substituents [19]. Furthermore, the tertiary ammoni-
um-substituted methylene blue derivative possesses lower pKa 
values than the lower-order substituents, which results in faster 
deprotonation when bound to the negatively charged bacterial 
cell envelope structure and better uptake. It was further shown 
that, by employing relatively short drug-light intervals, APDT 
of the infected area killed the photosensitized bacteria without 
damaging the surrounding healthy cells/tissues [22-24]. 

Phenothiazinium is also a substrate for multidrug resistance 
pumps [25,26], a family of transmembrane proteins that me- 
diate the efflux of amphipathic cations, amongst others. Multi-
drug resistance pump inhibitors may therefore be employed 
when phenothiazinium-APDT yields suboptimal results. For 
example, Tegos et al. have shown that co-incubation of tolui-
dine blue O with different efflux pump inhibitors (EPIs) such 
as NorA and Mex-AB increased the bactericidal effect of tolu-
idine blue O by at least 2 logs in both S. aureus and P. aeru-
ginosa [27]. It is noteworthy that this effect was more promi-
nent when the EPI was administered before adding toluidine 
blue O than after, indicating that toluidine blue O competi-
tively binds the pump binding site of EPI and therefore blocks 
its access when the EPI inhibitor is administered after incuba-
tion with toluidine blue O. Nevertheless this approach must be 
further investigated given that EPIs have not yet reached clin-
ical development due to their high toxicity [26,28,29].  

Another class of compounds that potentiates APDT with 
phenothiazinium or its derivatives is electron acceptors. A 
good example is sodium azide. Although sodium azide is a 1O2 
quencher, the addition of sodium azide (10 mM or 0.1 mM) 
increased the bactericidal effect of MB-APDT (25 μM) in E. 
coli and S. aureus by > 1 log when illuminated with red light 
(620-750 nm), even in the absence of oxygen [30]. The adju-
vant effect of sodium azide was attributed to the production of 
azidyl radicals. Inasmuch as such an effect was absent in chlo-
rin(e6)-APDT [30], which produces mainly 1O2 through type II 
reactions [1], this modality requires the use of type I PSs to 
enable a one-electron oxidation of the azide anion by pho-
to-activated PS. However, the exact mechanism of how the 
excited PS removes the electron from the azide anion requires 
further investigation. Similar results were obtained with other 
phenothiazinium-based PSs, including methylene blue, dime-
thyl methylene blue, new methylene blue, toluidine blue O, 
azure A, and azure B [31].  

2.2. Porphyrins 

Porphyrins (Table 1) are commonly employed for (A)PDT 
because of their high molar absorptivity, relatively high triplet 
state quantum yield [32], easy synthesis [33,34], and chemical 
versatility (i.e., easily modifiable). The photodynamic action 
of porphyrins stems from mainly a type II mechanism [35] 
following excitation with light of typically 405-550 nm. 

The number of charges carried by a porphyrin derivative is 
positively correlated with its bactericidal efficacy, whereby 

charge distribution also plays a decisive role [36,37]. A cati-
onic charge is a critical factor in APDT of Gram-positive spe-
cies. Porphyrins with a net cationic charge, such as meso-sub-
stituted cationic porphyrins, effectively kill Gram-negative  
bacteria because of increased binding/uptake efficacy [38]. 
Corroboratively, two novel cationic porphyrins carrying pyri-
dinium (PyP, Table 1) and imidazolium (ImP) substituents 
were shown to bind different loci at the bacterial outer mem-
brane via ionic interactions, penetrate the cell wall, and enter 
the cell [39]. The PSs were able to reduce the viability of both 
Gram-positive and Gram-negative bacteria by 6 log with a PS 
concentration of 2 μM (ImP) or 6 μM (PyP) and a light dose of 
60 J/cm2 [39].  

In case of Gram-negative species, a high number of positive 
charges asymmetrically distributed across the structure as well 
as a hydrophobic meso-substituent group (e.g., tri-Py+-Me-PF, 
Table 1) are important determinants for PS-bacterial cell asso-
ciation [8,36,40]. Accordingly, the amphiphilicity of porphy-
rins dictates PS-cell interactions with respect to Gram-negative 
bacteria and hence the APDT outcome. The hydrophobic do-
main may undergo lipophilic interactions with the bacterial 
cell wall, whereas adjacent charges on the porphyrin promote 
electrostatic interaction with the negatively charged cell env-
elope and improve uptake [35,41]. To identify the PDT mech-
anism that underlies these amphiphilic PSs, Tavares et al. [35] 
compared the Gram-negative pathogen killing effects of tet-
ra-Py+-Me, tri-Py+-Me-PF, and tri-SPy+-Me-PF in the presence 
of different ROS scavengers that tend to neutralize either the 
free radicals or the 1O2. The authors found that these porphyrin 
derivatives are likely to undergo a type II mechanism and 
produce 1O2.  

Anionic and neutral porphyrins are generally not recom-
mended for targeting Gram-negative bacteria due to their poor 
binding efficacy. However, the association of anionic and neu-
tral porphyrins with Gram-negative bacteria can be considera-
bly improved by the conjugation of cationic antimicrobial pep-
tides (CAMPs) or cell penetrating peptides (CPPs) such as 
apidaecin [42,43], Tat [44], buforin, or magainin [45] to the PS. 
These PS-peptide conjugates effectively photosensitized E. 
coli and induced considerable cell death following APDT 
compared to unconjugated PS. Other examples of eligible an-
timicrobial peptides are described in [46].  

It should be noted that porphyrins are also taken up by 
mammalian cells [47]. Unspecific targeting can therefore not 
be ruled out and may impair the selectivity of APDT. 

2.3. Phthalocyanines 

As porphyrins, phthalocyanines (Table 1) are heterocyclic 
macrocycle aromatic compounds (Table 1). Phthalocyanines 
differ from porphyrins by the isoindole subunits that are inter-
connected by a secondary amine bridge (versus methene bri-
dge-interconnected pyrroles) [7], shifting the excitation maxi-
mum to longer wavelengths (typically > 660 nm). The mostly 
studied phthalocyanines for APDT are based on zinc (II) 
phthalocyanine (ZnPc) [9,48-54]. ZnPc predominantly gener-
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ates 1O2 upon excitation [54]. 
Native ZnPc was found to be ineffective against Gram- 

negative bacteria such as E.coli [48] and had to be applied in 
combination with membrane perturbing agents such as    
ethylenediaminetetraacetic acid (EDTA) or calcium chloride to 
ensure (intra)cellular delivery [23,55,56]. In contrast, ZnPc 
exhibited affinity for the Gram-positive Streptococcus mitis, 
which involved the association with membrane proteins resid-
ing in the cytoplasmic membrane [49,54]. Later studies re-
vealed that the introduction of a positive charge considerably 
improved the binding affinity and inactivation efficacy in 
Gram-positive bacteria, but also Gram-negative bacteria such 
as E. coli and Pseudomonas aeruginosa [9,57]. Illustratively, 
Spesia et al. [53] discovered that cationic ZnPc was able to 
eliminate E.coli in the presence of human blood derivatives. 
This finding spawned the possibility that APDT may be used 
for blood product sterilization as a result of selective bacterial 
membrane targeting, while preventing hemolysis stemming 
from erythrocyte membrane oxidation and rupture.    

Subsequent efforts were directed at optimizing this class of 
PSs. While studying 14 anionic, cationic, or neutral zinc and 
aluminum-containing phthalocyanine derivatives, Mikula et al. 
[58] found that, of all cationic phthalocyanines that exhibited 
particularly high antibacterial activity and low dark toxicity, 
those with at least one amino group in the substituent bound 
with greatest affinity to the negatively charged surface of the E. 
coli outer membrane. The authors attributed the bonding be-
havior of the amino group to the high positive charge density.  

To date, investigations on the use of phthalocyanines for 
APDT comprise in vitro studies in buffer or solution. The in 
vivo use and clinical relevance have not yet been addressed 
experimentally.   

2.4. Fullerenes 

Spheroidal fullerenes such as C60 [59] and C70 [60] (Table 
1) are football-like structures composed of pentagonal and 
hexagonal rings that can absorb visible light [61] and mediate 
photochemical reactions from the excited state [60,62-64]. The 
photo-excited fullerenes can react with electron donors to gen-
erate fullerene radical anions (C60•−, C70•−) [61,65-68], which 
in turn can mediate the production of •OH in the presence of 
O2. These properties make fullerenes suitable candidates for 
APDT because bacteria can simultaneously provide a number 
of electron donors from organic sources (NADH and succinate 
[69]) and inorganic sources (hydrogen [70], ammonia [71], 
sulfur [72], and ferrous iron [73]).  

Due to the highly lipophilic and non-charged structure, na-
tive fullerenes exhibit poor PS-bacterial cell association and 
are therefore relatively inactive as PSs against bacteria [64,74]. 
Fullerenes must be chemically modified with amphiphilic 
molecules [75] to enable bacterial photosensitization. It has 
been demonstrated that the derivatization translates to high 
selectivity towards bacterial cells [59]. Accordingly, a cationic 
fullerene derivative N,N-dimethyl-2-(40-N,N,N-trimethyla-
minophenyl)fulleropyrrolidinium iodide (DTC602+) [74] con-

siderably enhanced APDT efficacy of E. coli and Pseudomo-
nas aeruginosa (> 3.5 log) compared to the negligible killing 
effect with non-charged N-methyl-2-(40-acetamidophenyl) 
fulleropyrrolidine (MAC60). Moreover, Hamblin et al. [76] 
showed that, when iodide was added as an electron donor, cat-
ionic C60-fullerene (LC16) produced •OH through a type I 
mechanism and effectively killed Acinetobacter baumannii 
and MRSA. Another study published by the same group [77] 
showed that azide can also act as an electron donor in a similar 
fashion. Finally, fullerene derivatives are more stable than 
tetrapyrrole-based PSs such as porphyrins and chlorins [74], 
which may render these PSs more suitable for pharmacological 
formulations and clinical use. A dedicated review on fullerenes 
as potent PSs in PDT and APDT is available elsewhere [64].  

2.5. Naturally occurring photosensitizers 

2.5.1. Hypericin 
The most commonly used naturally occurring PS is hyperi-

cin (Table 1), a red-colored anthraquinone derivative that 
comprises one of the main bioactive constituents of Saint 
John’s wort (Hypericum). The PS, with an excitation maxi-
mum at 593 nm, exhibits anti-cancer, anti-viral, and an-
ti-bacterial properties that, in case of viruses and bacteria, have 
been ascribed to its photosensitization effects [78-81]. Hyperi-
cin confers phototoxicity through a type II mechanism in 
MSSA and MRSA as well as pathogenic E. coli [80,82,83]. 
Maximum ROS generation by hypericin and its derivatives is 
achieved in a lipophilic milieu [84]. 

Hypericin-mediated phototoxicity was found to be more 
profound in planktonic S. aureus than in its biofilm-forming 
counterpart [82]. This is possibly due to the presence of poly-
saccharide intercellular adhesin (PIA) in the biofilm that 
blocks the uptake of hydrophobic PSs such as hypericin [85]. 
Photokilling of bacteria correlates with the time of pre-incuba-
tion with hypericin; longer pre-incubation (24 hours) led to 
more S. aureus cell death than shorter pre-incubation periods 
[80].  

A good method to improve APDT of biofilm-producing 
bacteria is chemical perturbation of the biofilm. N-acetylcy-
steine is a highly suitable adjuvant, as it breaks down the bac-
terial biofilms of clinically relevant pathogens, including S. 
aureus, Pseudomonas aeruginosa, Enterococcus faecalis, and 
Staphylococcus epidermidis [86,87]. Correspondingly, Kashef 
et al. [82] demonstrated that the combined use of hypericin and 
N-acetylcysteine increased intracellular delivery of hypericin 
in S. aureus. The joint application of hypericin with N-acetyl-
cysteine therefore warrants further investigation, although it 
should be kept in mind that N-acetylcysteine is a glutathione 
precursor [88,89] and may therefore strengthen the bacterial 
antioxidant machinery in the hydrophilic compartment, and 
thereby reduce APDT efficacy. This holds particularly for 
Gram-negative species since glutathione synthesis is not found 
in most Gram-positive species [90].  
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2.5.2. Curcumin 
Another naturally occurring PS is curcumin (Table 1) [91], 

a yellow pigment derived from the root of the Curcuma longa 
plant [92,93]. Curcumin is a polyphenolic compound that ab-
sorbs visible light in the 405-435-nm range, depending on the 
chemical environment [94]. Due to its unique chemical prop-
erties, curcumin exhibits pleiotropic binding towards many 
types of biomolecules, including (phospho)lipids, proteins, and 
nucleic acids [94]. 

The photokilling propensity of curcumin was considerably 
more profound in the Gram-positive S. aureus than the Gram- 
negative E. coli and Salmonella typhimurium (~300 times 
more effective when corrected for light dose and concentration) 
[95], indicating an associative predilection for Gram-positive 
species. The bactericidal effect of light-irradiated curcumin 
occurs at relatively short drug-light intervals (0-60 min), 
whereby longer drug-light intervals (90 min) did not yield an 
additional cytotoxic effect [95]. These data suggest that cur-
cumin either distributes rapidly throughout the cell or confers 
its phototoxic effect at superficial loci, from which the gene- 
rated radical intermediates may induce local damage or diffuse 
to intracellular targets. At this point, however, the cytotoxic 
mechanisms in curcumin-APDT-subjected bacteria are elusive. 
The production of ROS by light-irradiated curcumin has been 
exclusively studied in the context of mammalian cells [96] but 
not bacterial cells. In rat basophilic leukemia cells it was 
shown that carbon-centered radicals with a long lifetime (up to 
27 seconds) were produced that may have been responsible for 
the phototoxicity of curcumin. These findings may explain 
why surface binding of curcumin could suffice to kill bacteria, 
given that these intermediates are more likely to transgress the 
cell wall than the short-lived 1O2 or •OH [13].  

A contributory mechanism to cytotoxicity is that curcumin 
generates radicals or become a radical itself in a physiological 
environment in the absence of light, especially at pH > 6.5 
[94]. On the other hand, curcumin is also very photo-labile 
[94], as a result of which its photodynamic action may be ra-
ther short-lived due to rapid photodegradation. In any case, the 
use of curcumin as a PS deserves further investigation, partic-
ularly since the molecule can be modified chemically at the 
flanking or central functional groups [94] without perturbing 
the conjugated system required for triplet state generation. The 
conjugation of cationic moieties may further enhance curcu-
min’s APDT efficacy.  

3. The barriers in antibacterial photodynamic therapy 

Traditional antibiotics often utilize a key-hole mechanism, 
where the compounds target one specific membrane- or (in-
tra)cellular component in bacteria, be it proteins, lipids, or 
DNA, to either stop growth or kill the organism. For example, 
penicillin binds to the penicillin binding proteins and inhibits 
the crosslinking of the peptidoglycan multi-layer [97]. Van-
comycin binds to the D-Ala-D-Ala residues of the peptide side 
chain of the peptidoglycan precursor lipid II and deters down-

stream peptidoglycan synthesis steps [98]. Daptomycin is be-
lieved to insert into the membrane of Gram-positive bacteria, 
where it forms aggregates that modify the curvature of the 
membrane and cause cavitation, ion leakage, and ultimately 
cell death [99].  

In contrast, the PSs used for APDT typically distribute to 
multiple extracellular or intracellular compartments and/or 
produce radical intermediates that can migrate away from the 
formation site. As a result, various components of cell metabo-
lism are disrupted, culminating in cell demise when suffi-
ciently afflicted. The extracellular and intracellular targets of 
the commonly used PSs are summarized in Table 3 and a ge-
neric overview of possible target loci is provided in Figure 3. 
For a more detailed overview of the targets, readers are re-
ferred to a recent review [100]. Since APDT efficacy largely 
depends on the localization of the PS, the following subsec-
tions focus of the physical and biochemical hurdles that impair 
the PSs in reaching the target sites.  

The inactivation of bacteria is dependent on the association 
of the PS with the pathogen. The first step is the binding or 
interaction of the PS to the bacterial cell surface. Both Gram- 
positive and Gram-negative bacteria have an overall negatively 
charged cell surface comprised of different surface structures 
[101]. The anionic surface therefore acts as an electroattractive 
scaffold for cationic PSs, which are more efficiently bound to 
and taken up by bacteria [102]. Due to the short lifetimes of 
most radical intermediates, and particularly of type II-gene-
rated 1O2 and type I-produced •OH, it is preferable that the PS 
is taken up for maximum oxidative damage following APDT. 
Owing to the complexity of the bacterial cell envelope, the 
uptake of PSs is, however, hampered by several factors ad-
dressed next. Readers should note that in practice, the exclu-
sion of exogenous compounds from the intracellular space is 
not attributable to a single barrier acting on its own, but rather 
in concert with other barriers. Potential means to overcome 
these barriers are also discussed where applicable. 

3.1. Lipopolysaccharides of Gram-negative bacteria 

Lipopolysaccharides (LPS) are the major component of the 
outer membrane of Gram-negative bacteria (Figure 4) that 
impart structural integrity and protect the membrane from at-
tacks by chemicals. LPS forms the outermost physical and 
electrostatic barrier that exogenous compounds must trans-
gress to reach the lipid bilayer of the outer membrane. Its 
presence is therefore a hurdle for intracellular PS targeting. 
Although the LPS layer obstructs easy entry of PSs into 
Gram-negative bacteria, the layer may also serve as a target for 
APDT [18,103]. The surface structures are vitally important in 
bacterial cell physiology. To underscore the importance of LPS: 
when LPS is structurally modified or removed, the bacteria die. 

Because of its highly anionic nature, LPS is considered a 
primary target of cationic PSs. A cationic charge is not the only 
determinant governing PS association with LPS, as toluidine 
blue O (logP = –0.21) exhibited higher affinity towards LPS  
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Table 3. The extra- and intracellular targets of some common photosensitizers 

Class Name Extracellular target Intracellular target Bacteria Ref. 
Phenothiazinium Methylene blue (MB) Cell wall surface and 

membrane protein 
Chromosomal DNA E. faecalis [252] 

Rose Bengal (RB) Cytoplasmic membrane DNA* E. coli [253] 

Toluidine blue O (TBO) Lipopolysaccharides and 
outer membrane  

ND P. aeruginosa [254] 

Porphyrin  5,10,15,20-tetrakis(1-methylpyridinium-4-
yl)porphyrin tetra-iodide (Tetra-Py+-Me) 

Lipopolysaccharides and 
outer membrane lipids  

DNA*  E. coli, Aeromonas salmonicida, Aero-
monas hydrophila, Rhodopirellula sp, 
S. aureus, Truepera radiovictrix, Dei-
nococcus geothermalis, Deinococcus 
radiodurans 

[114,127] 

5,10,15,20-tetra(4-N,N,N-trimethylammo- 
niumphenyl) porphyrin 

Cell wall and cytoplas-
mic membrane 

Plasmid DNA E. coli  [41] 

5,10,15,20-tetrakis(N-methyl-4-pyridyl): 
21H,23H-porphine (Tetra-Py+-Me) 

Outer membrane ND E. coli  [124] 

Hematoporphyrin monomethyl ether  
(HMME) 

Cytoplasmic membrane ND  S. aureus [255] 

Phthalocyanine Zinc(II) phthalocyanine (ZnPc) Outer membrane and 
cytoplasmic membrane 

ND E. coli [48] 

Fullerene  N-methylpyrrolidinium C60 fullerene  
iodide salt 

Cytoplasmic membrane ND S. aureus [256] 

*DNA as target of APDT still requires further investigation. In most studies, it is not distinguished whether the DNA damage comprises chromosomal DNA or 
plasmid DNA; ND = not detected/not discussed.  

 

 
 

Figure 3. Overview of APDT targets in bacterial cells, indicated by a red arrow. 

 
isolated from different bacterial strains than MB (logP = –0.97) 
[18], while both PSs have a formal charge of 1. LPS as a target 
also serves another clinical purpose, namely to activate the 
innate and adaptive immune system of the host organism [104], 
which may aid to an extent in post-APDT removal of residual 
pathogens [105,106].  

In regard to LPS redox modification by APDT, a recent 
study [107] reported that chitosan-conjugated Rose Bengal 
nanoparticles and methylene blue effectively neutralized LPS 

isolated from P. aeruginosa and reduced the inflammatory 
potency of LPS. Given that selective inactivation of LPS is not 
associated with detrimental side effects in mammalian host 
cells, such PSs should be further explored for their utility in a 
clinical setting, where the infected tissue is in close proximity 
to healthy tissue. Moreover, the binding of the PS to LPS 
competes with cations such as Ca2+ and Mg2+ that stabilize the 
bacterial membrane structure and integrity. Displacement of 
structurally important cations weakens the outer membrane 

http://dx.doi.org/10.18053/jctres.201503.002


150 Liu et al. | Journal of Clinical and Translational Research 2015; 1(3): 140-167 
 

Distributed under creative commons license 4.0        DOI: http://dx.doi.org/10.18053/jctres.201503.002 

  

 
 

Figure 4. Illustration of the cell envelope of Gram-negative and Gram-positive bacteria. 
 

and leads to a ‘self-promoted’ pathway of PS uptake, as has 
been documented in [103]. Although a cationic PS (poly-L- 
lysine chlorin(e6) conjugate, pL-e6) binds 15-100 times more 
efficiently to S. aureus than to E. coli, the killing effect was 
much stronger in the latter. This is mainly ascribed to the fact 
that divalent cation replacement in E. coli LPS by the cationic 
PS led to membrane distortion and pore formation to promote 
uptake. In contrast, the thick peptidoglycan of S. aureus 
blocked such access, although the PS bound extensively to the 
negatively charged cell surface [108].  

3.2. Outer membrane of Gram-negative bacteria 

The outer membrane is comprised of a phospholipid bilayer 
(Figure 3) whose barrier function is typical of all biomem-
branes. Biomembranes have hydrophilic surfaces and lipo-
philic cores, whereby the hydration state of the membrane (and 
thus penetrability of water-soluble molecules) decreases to-
wards the midplane of the bilayer [109]. This chemical com-
position of the bilayer makes the outer membrane as well as 
the cytoplasmic membrane a very effective barrier against a 
vast number of molecules [109]. Typically, very lipophilic 
molecules (high logP, e.g., phthalocyanines, section 2.3) get 
trapped in the bilayer, whereas very hydrophilic molecules 
(low logP) cannot pass through the bilayer core due to chemi-
cal incompatibility. Because the tightly packed component 
phospholipids do not leave much room for interposition, large 
molecules (e.g., fullerenes, section 2.4) are also excluded. Only 
amphipathic molecules, i.e., molecules with lipophilic back-
bones and polar/charged flanks (medium logP, e.g., curcumin 
and hypericin, section 2.5) are quite capable of transgressing 
membranes [94].  

Despite the evolutionary perfected barrier function of 
biomembranes, the structures are not impervious. Disruption 
of LPS upon displacement of divalent ions, as described in the 

previous section, results in weakening of the outer membrane 
as a result of which the outer membrane becomes accessible to 
PSs [103]. The uptake of cationic PSs across the outer mem-
brane subsequently proceeds via a so-called self-promoted 
pathway [103]. This pathway entails the replacement of im-
portant LPS-binding divalent ions (Ca2+ and Mg2+) by cationic 
PS, thereby disrupting outer membrane stability, leading to the 
formation of channels in the outer membrane that can facilitate 
PS uptake.  

The self-promoted uptake is not as straightforward for  
anionic PSs. Anionic PSs may require an active transport ma-
chinery [108]. Porins, which are transmembrane proteins  
situated in the outer membrane of Gram-negative bacteria 
[110,111], are possible candidates insofar as these proteins are 
responsible for the transport of substances such as sugars, 
small peptides, and drugs [111]. It has been shown that the 
degree of uptake of some anionic PSs (Rose Bengal and indo-
cyanine green) decreased following trypsin treatment, sug-
gesting the involvement of protein transporters in shuttling PSs 
across the outer membrane [108]. In contrast, the uptake of 
MB (cationic) was not affected by trypsin [48]. Taken together, 
the outer membrane is a second barrier to cellular entry of ex-
ogenous compounds, albeit one that can be circumvented in 
case of both anionic and cationic PSs. In case of neutral PSs, 
conjugation of the PS to a cationic molecule could sufficiently 
facilitate outer membrane penetration by the PS [57].  

3.3. Teichoic acids of Gram-positive bacteria 

Comparable to Gram-negative LPS, teichoic acids in Gram- 
positive species (Figure 3) contribute to the net negative cha-
rge on the bacterial cell surface. The carboxylate and phos-
phate groups of teichoic acids (comprising the phosphodiester 
bonds between teichoic acid monomers) are responsible for the 
negative charge of these acids [112]. 
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Teichoic acids including lipoteichoic acids that are attached 
to the cytoplasmic membrane and wall teichoic acids that are 
bound to the peptidoglycan impart essentially all of the nega-
tivity of the peptidoglycan/periplasmic space of Gram-positive 
bacteria [112]. The anionic residues are also a major binding 
site of divalent ions such as Mg2+ and Ca2+ [101], altogether 
accounting for an electrostatic barrier for mainly anionic mol-
ecules. Cationic PSs can get passed these residues through 
electrostatic interactions, while anionic PSs are repulsed by the 
negative charges [108]. However, as for LPS, the electrostatic 
interaction between structural cations and cationic PSs is 
competitive [103], rendering the membrane surface biochemi-
cally ideal for cationic PSs. Also, deionization of the outer 
membrane surface (Gram-negative bacteria) or the pepti-
doglycan (Gram-positive bacteria) will result in destabilization 
of the barrier function and facilitate PS passage [108].   

3.4. Peptidoglycan  

As shown in Figure 4, the peptidoglycan is situated on the 
outer surface of the cytoplasmic membrane in Gram-positive 
bacteria and between the outer membrane and cytoplasmic 
membrane in Gram-negative bacteria. Being the outer most 
layer in Gram-positive bacteria, the peptidoglycan layer is 
2-10 times thicker (20-80 nm) in these cells than in Gram- 
negative bacteria to enable optimal barrier function. The aver-
age hole size of peptidoglycan was found to be 2.06 nm for the 
Gram-negative E. coli and 2.12 nm for Gram-positive Bacillus 
subtilis [113]. Due to the structural and anatomical differences, 
the degree of physical and chemical fortification imposed by 
the peptidoglycan in Gram-negative bacteria may be less sig-
nificant than in Gram-positive bacteria.  

In both Gram species, however, the peptidoglycan is a rela-
tively porous layer and rather inadequate in terms of a perme-
ability barrier for most PSs [13]. Even neutral and anionic PSs, 
which should be repulsed by the negatively charged pepti-
doglycan, are under certain circumstances able to diffuse 
through this multi-layered scaffold [108]. Pereira et al. [114] 
reported that the uptake and APDT efficacy of cationic por-
phyrins are closely related to the chemical composition of the 
external structures of different bacteria. Gram-positive bacteria, 
even with a more complex and multilayered envelope (T. ra-
diovictrix, D. geothermalis, and D. radiodurans) showed higher 
susceptibility towards porphyrin derivatives (Tetra-Py-Me+). 
These findings notwithstanding, the permeability of the pepti-
doglycan make Gram-positive bacteria more suitable targets 
for APDT compared to Gram-negative bacteria. 

3.5. Cytoplasmic phospholipid bilayer membrane 

The barrier function of biomembranes was explained in 
section 3.2 and also applies to the cytoplasmic membrane. 
However, the differential composition of the cytoplasmic 
membrane between Gram-positive and Gram-negative bacteria 
does dictate the degree to which this membrane exerts a barrier 
function. The zwitterionic phospholipid phosphatidylethano-

lamine constitutes the most abundant phospholipid in bacteria, 
but is more replete in Gram-negative strains than in Gram- 
positive bacteria [115]. All bacteria, regardless of the gram- 
species, have at least 15% anionic lipids comprising either 
phosphatidylglycerol, cardiolipin, or both [116,117]. The cyto-
plasmic membrane of some Gram-positive bacteria has low 
phosphatidylenthanolamine content and is, by ratio, therefore 
enriched with more anionic phospholipids [115]. This, along 
with other factors addressed in the previous subsections, ex-
plains why the uptake of many cationic PSs is more prolific in 
Gram-positive species than their Gram-negative counterparts. 
Consequently, APDT is more effective in Gram-positive bacte-
ria. This is of particular interest when considering that the 
drug-resistant pathogenic Gram-positive strains such as MRSA 
and vancomycin-resistant enterococci species, among others, 
are a real threat to public health [118]. 

4. The (putative) targets of antibacterial photody-
namic therapy 

4.1. Lipids 

Owing to their lipophilicity, most PSs (Table 1) localize to 
cellular and subcellular membranes following uptake [13]. It 
therefore follows that lipids are an important target for APDT 
[114] and that the phototoxicity induced by APDT emanates 
from oxidative modification of component lipids and mem-
brane proteins (Figure 4) that, just as LPS, are vital to cell 
physiology and metabolism. The ROS and other radical inter-
mediates mainly target the double bonds in the phospholipid 
acyl chains, i.e., unsaturated fatty acids [119]. Accordingly, the 
bacterial strains in which the outer membrane leaflet is com-
posed of saturated fatty acids or a relatively small fraction of 
unsaturated fatty acids are less susceptible to APDT [120]. 
Another study [121] reported that the phospholipids in the 
inner leaflet of the outer membrane and the cytoplasmic mem-
brane of E. coli are a target of redox modification induced by a 
porphyrin derivative (tri-Py+-Me-PF). The extensive formation 
of lipid hydroperoxides and a decrease in the amount of un-
saturated fatty acyl chains were observed in lipid extract as a 
result of APDT.   

Oxidative modification of membrane (phospho)lipids alters 
membrane fluidity and organization as well as membrane pro-
tein function [119] that, when extensive enough, culminate in 
cell death [115,122]. Outer membrane targeting for APDT 
should therefore be sufficient to induce massive cytotoxicity 
and circumvent the hurdles associated with intracellular deliv-
ery of the PSs (section 3). Some proof-of-concept has already 
been provided. Johnson et al. [123] studied PS localization and 
APDT efficacy using eosin-(KLAKLAK)2 as PS-peptide con-
jugate prior to APDT of E. coli and S. aureus. Their results 
revealed that the PS-peptide complex localized to the cell sur-
face. The (KLAKLAK)2 initially acted as a targeting ligand 
and, after eosin-induced lipid oxidation had occurred follow-
ing APDT, as a membrane perturbing agent. The cumulative 
effect, which was facilitated by redox modification of lipids, 
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was bacterial cell death in the absence of intracellular PS ac-
cumulation.  

Some porphyrin derivatives have also been reported to ex-
hibit membrane accumulation and induce site-confined lipid 
peroxidation. Two studies [114,124] have demonstrated that 
short incubation (1-3 hours) of Gram-negative bacteria with 
tetra-Py+-Me (Table 1) led to PS accumulation in the outer 
membrane without intracellular accumulation. Longer incuba-
tion times result in redistribution of tetra-Py+-Me into the cell. 
In E. coli, Ragas et al. [125] showed that tetra-Py+-Me local-
ized to the outer surface as well as intracellularly following 20 
hours of incubation. Accordingly, the production of 1O2 oc-
curred at multiple locations.  

4.2. Nucleic acids 

Whether nucleic acids are a primary target of APDT is 
presently elusive and marked by controversial data. Several 
studies have suggested the binding of PSs to nucleic acids 
[125,126], which implies that nucleic acids are oxidatively 
modified by APDT and induce genetic catastrophe after treat-
ment. Support for this hypothesis was provided by an APDT 
study with the hydrophilic cationic porphyrins tetra-Py+-Me 
and tri-Py+-Me-PF (Table 1), which demonstrated that APDT- 
induced nucleic acid damage occurred in the order of 23S 
rRNA > 16S rRNA > DNA in E. coli and S. warneri [127]. In 
contrast, Samon-Divon et al. [128] reported that DNA damage 
occurs first following APDT with tetra-Py+-Me, at least in   
E. coli. Extensive production of 1O2 and the cell permeation 
properties of these PSs were cited to be responsible for the 
nucleic acid damage that occurred inside the bacterial cells 
[35]. 

Nevertheless, whether DNA or RNA is the primary target of 
APDT remains an open debate [127,129,130]. For example, a 
proteomics study aimed at identifying the molecular targets of 
APDT of MRSA using tetra-Py+-Me [131] concluded that nu-
cleic acids are not likely a primary target because DNA and 
RNA damage can be repaired by various repair pathways. It 
was reported that RecA expression in S. aureus, which triggers 
the SOS signal for DNA repair, is upregulated during APDT. 
This mechanism does not seem to be ubiquitous, however, as 
similar results were not found in P. aeruginosa [132]. So alt-
hough nucleic acids may be oxidized as a result of APDT, the 
redox modifications can be reverted and the cells may not un-
dergo cell death as a direct result of nucleic acid damage. 
Moreover, DNA damage was only found when a remarkable 
amount of bacterial cells had been photo-inactivated, pleading 
against this mechanism as a primary cause of cell death [100]. 
More focused studies are needed to elucidate the role of nu-
cleic acid oxidation in the context of cytotoxicity.  

4.3. Proteins  

Proteins are present in all compartments of the bacterial cell, 
from the surface (porin proteins, membrane proteins, lipopro-
teins) to the cytosol (soluble proteins) [133], and are important 

for various biological activities that occur in bacterial cells. 
Membrane proteins are likely the preferred targets for the PSs 
due to their shared lipophilicity. 

Proteins are unequivocally damaged by APDT, although 
bacterial proteins are less sensitive to oxidative modification 
compared to mammalian proteins [114]. However, whether this 
damage translates to bacterial cell death is currently unclear. A 
protein-electrophoresis study performed in APDT-subjected E. 
coli and S. warneri using tetra-Py+-Me and tri-Py+-Me-PF 
showed that substantial protein degradation and a consequent 
decrease in cell viability occurred in both strains quite quickly 
after irradiation (5-60 min) [134]. Tri-Py+-Me-PF-APDT was 
more cytotoxic in both strains due to its higher 1O2 production. 
The authors suggested that the asymmetric structure and 
charges of tri-Py+-Me-PF as well as the lipophilic pentafluor-
ophenyl group increased the binding affinity to bacterial cells, 
which has been echoed by other studies [35-37].  

The rapid degradation of proteins corroborates redox modi-
fication following APDT, but does not provide information on 
whether this process accounts for or contributes to cell death. 
In fact, bacterial cells possess several coping mechanisms for 
proteotoxic stress [135], and the same argument may apply for 
proteins as for nucleic acids (i.e., initial oxidative damage, but 
no biological consequences due to repair). The proteomics 
study discussed in section 4.2 revealed an altered expression of 
proteins involved in carbohydrate uptake, cell division, and 
response to oxidative stress [131], whereby the latter response 
seems to be ubiquitous across multiple species, including hu-
man cancer cells [136]. Consequently, the cytotoxicity of 
APDT-induced proteotoxic stress requires closer investigation, 
also in light of the coping mechanisms and possible interven-
tions to block the related survival pathways.   

5. Targeting of pathogenic bacteria 

A large numbers of in vitro studies have provided proof-of- 
concept that APDT kills a broad spectrum of pathogenic bacte-
ria. Selective results on some important resistant pathogenic 
bacteria, both Gram-positive and Gram-negative, are presented 
in this section.   

5.1. Pseudomonas aeruginosa (Gram-negative) 

P. aeruginosa survives in both normoxic and hypoxic at-
mospheres and thrives in water, soils, skin, and natural and 
artificial environments created by humans. The organism uses 
a broad variety of sources for nourishment and is biologically 
versatile, as a result of which it can cause serious infection in 
diseased/damaged tissues where oxygen levels are relatively 
low, particularly in immunocompromised hosts (opportunistic 
infections). The most important problem is that P. aeruginosa 
is frequently found in hospitals on medical equipment, where 
it constitutes a notable source of nosocomial infections. P. ae-
ruginosa has developed antibiotic resistance due to its capacity 
to adapt through relatively rapid planktonic→biofilm phase 
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transition and quorum sensing [137], i.e., the capacity to   
change genotype based on population density. These aspects 
make P. aeruginosa a medically serious problem. A positive 
clinical aspect is that these infections are generally easily ac-
cessible to PSs as well as optical fibers for APDT. 

The in vitro APDT efficacy using toluidine blue O (0-500 
µM) was determined in multidrug resistant P. aeruginosa and 
compared to its susceptible counterpart [138]. Furthermore, the 
APDT efficacy was independent of efflux pump functionality 
or the level of resistance [25]. The authors suggested that DNA 
damage was the main cause of cell death, despite the fact that 
DNA damage is not a putative cause of APDT-mediated cell 
death (section 4.2). At this point, however, SOS signaling and 
subsequent DNA repair cannot be ruled out until this has been 
demonstrated in P. aeruginosa mutants with an impaired DNA 
repair machinery. Also, mechanistic studies need to be carried 
out to identify the localization of PSs and exact targets in P. 
aeruginosa.  

In addition to toluidine blue O, APDT with the porphyrin 
precursor 5-aminolevulinic acid (5-ALA) was shown to be 
effective against P. aeruginosa, albeit at a relative high con-
centration (10 mM). This was confirmed in another study [139] 
that underscored that 5-ALA, and particularly its long chain 
derivatives, remain interesting PSs for APDT of P. aeruginosa. 
Regardless of the high dose, 5-ALA and derivatives exhibit 
selectivity towards P. aeruginosa and are harmless towards 
healthy surrounding tissues [140].  

5.2. Staphylococcus aureus (Gram-positive) 

Among all Gram-positive pathogens, S. aureus is the most 
extensively studied as a serious cause of life threatening infec-
tions such as skin-, soft tissue-, and blood stream infections 
both in hospitals and in the community. A significant reduction 
in MRSA viability was observed in vitro for numerous PSs, 
such as phthalocyanine, porphyrin, chlorines, and phenothia-
zinium [141-143]. Although many in vitro studies demon-
strated that APDT could effectively kill S. aureus in either its 
planktonic form or in biofilms using diverse PSs, fewer reports 
could be found that furnished in vivo proof [144].  

Some unique findings on APDT targeting S. aureus are 
noteworthy. For example, it was reported that taking advantage 
of the common resistance mechanism of MRSA is one of the 
promising strategies to improve the specificity of PSs towards 
MRSA [145]. A specific enzyme-activated structure (𝛽𝛽-LEAP) 
was created, for which two phenothiazinium PSs (EtNBS- 
COOH) were combined to the side chains of cephalosporin. 
The two PSs were quenched in the uncleaved construct due to 
close proximity with each other, but were activated through 
cleavage of the lactam ring by beta-lactamase, which was syn-
thesized only by resistant strains. This differs from the com-
mon targeting strategies for other bacteria (antibody conjuga-
tion, attachment of antimicrobial peptides, etc.).  

A dedicated review on APDT treatment of MRSA can be 
found elsewhere [144].  

5.3. Mycobacterium tuberculosis (Gram-negative) 

M. tuberculosis is the main cause of multidrug resistant tu-
berculosis (MDR-TB) that emerged in the 1990s and was soon 
succeeded by the extremely drug resistant tuberculosis (XDR- 
TB). XDR-TB has developed resistance to all effective anti-TB 
drugs, including fluoroquinolones, and at least one of the injec- 
table drugs (e.g., kanamycin, amikacin, capreomycin) [146].  

M. tuberculosis possesses a distinct and rigid cell envelope 
structure [147]. The envelope is composed of an outer layer 
called ‘capsule’ [148], an outer membrane consisting of my-
colic acid, and several distinctive lipids (such as trehalose mo-
nomycolate and dimycolate, phthiocerol dimycocerosate, 
sulpholipid-1, diacyl trehalose, and pentacyl trehalose), and an 
asymmetric cytoplasmic membrane [149]. This complex enve-
lope structure makes M. tuberculosis a rather difficult target 
for APDT in term of PS uptake. However, in 1903, Niels Fin-
sen was awarded the Nobel Prize for inventing light therapy 
for lupus vulgaris, which was based on the excitation of en-
dogenous porphyrins (coproporphyrin) in M. tuberculosis 
[150]. 

Since then, scientists have been able to improve the APDT 
efficacy against this bacterium. A PS mixture called Radachlo-
rin, containing chlorin e6, chlorin p6, and purpurin, and a 
PEG-conjugated pheophorbid-amethyl ester (DH-I-180-3) have 
been tested [151] for their APDT efficacy against clinical 
strains of M. tuberculosis isolated from patients. Repeated 
APDT or intermittent APDT with pulsed irradiation using a 
light dose of 20 J/cm2 exhibited better killing efficacy than 
APDT using continuous light irradiation. The mechanisms of 
cytotoxicity and the biomolecular targets were, however, not 
investigated.  

It is noteworthy that secreted antioxidant enzymes (cata-
lase/peroxidase and superoxide dismutase) found in the “cap-
sule” [148] may influence the ROS-based bactericidal effect of 
APDT, which implies that deeper penetration and intracellular 
accumulation of the PS is of utter importance for killing M. 
tuberculosis. Nevertheless, encouraging findings of porin-like 
beta-barrel membrane proteins such as OmpATb [152] and 
Rv1698 [153] in the outer membrane of M. tuberculosis, 
which are proposed to transport small hydrophilic molecules 
[154] (albeit at significantly lower efficiency than other Gram- 
negative species such as E. coli [155]), may act as a transport 
channel for PSs, and cationic PSs in particular [151]. Further-
more, APDT was also shown to be effective in vitro against 
other Mycobacterium species that cause MDR-TB jointly, such 
as M. smegmatis. The administration of 7.5 μM cationic tetra- 
Py+-Me combined with illumination with a light dose of 18 J/cm2 
reduced the viability of these bacteria by 5-6 log within 5 
minutes [156].  

The abovementioned in vitro data showed promising as-
pects of killing the mycobacteria species with APDT. It is im-
portant to note, however, that M. tuberculosis is an intracellu-
lar bacterium. The models for studying this species in terms of 
therapy should therefore ideally entail infected mammalian 
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cells (preferably in the lungs) to achieve a representative level 
of clinical relevance. Although not with M. tuberlucosis itself, 
researchers conducted proof-of-concept studies using bacteria 
from the same family. A mouse model of Mycobacterium bo-
vis-induced granulomatous infection was successfully estab-
lished using collagen scaffold gel to study Verteporfin-APDT 
efficacy [157]. A 0.7 log bactericidal effect was found in vivo 
that was comparable to in vitro result using 60 J/cm2 light dose 
[157].  

The fact that these bacteria thrive inside host cells is a sig-
nificant therapeutic conundrum. A high level of PS targeting 
selectivity is exacted during APDT so that bacteria are killed 
and parenchymal cells are not. Although the surface of mam-
malian cells and bacteria is negatively charged (mammalian 
cells have a highly sulfated glycocalyx [3]), which is ideal for 
cationic PSs, the PS has to transgress at least two biomem-
branes to enter the bacteria. One possible strategy is to use 
porphyrin precursors such as 5-ALA or a hexylester derivative 
of ALA, which are more easily taken up due to their smaller 
size, and can be converted in M. phlei and M. smegmatis to 
coproporphyrin [158]. However when using such approach, it 
is important to avoid or limit phototoxicty to healthy cells be-
cause ALA can be converted to the light-sensitive protopor-
phyrin in mammalian cells [159]. 

5.4. Streptococcus mutans (Gram-positive) 

S. mutans is mainly located in the mouth, where it causes 
biofilm formation and contributes to dental caries [160,161]. 
APDT is a suitable treatment modality for S. mutans due to 
accessibility of the infection site and, above all, is effective 
against S. mutans [162], at least in vitro. Nevertheless, the 
clinical relevance of APDT of oral S. mutans is less significant 
than other infections due to the initially non-life-threatening 
nature of the infection, which is characterized by biofilm for-
mation on teeth (dental plaque). Biofilm is typically recalci-
trant to conventional antibiotic treatment, which generally 
aims to kill pathogenic microbes or block biofilm production 
[163]. A common clinical application of APDT of S. mutans is 
therefore disinfection of root canals [164]. In addition to their 
cariogenicity, S. mutans has been implicated in more severe 
conditions, including cerebral microhemorrhage [165] and 
infection of heart valves as well as atheromatous plaques in 
blood vessels [166]. At this point, PDT has been investigated 
for the treatment of atheromatous plaque, albeit without direct 
targeting of S. mutans. 

With respect to APDT efficacy, Rose Bengal (0.5 µM) (sec-
tion 2.1) caused complete eradication of planktonic S. mutans 
(3 Log10 CFU/mL) following irradiation with 400-600-nm 
light [162]. Another in vitro study reported that S. mutans bio-
film was reduced by 0.62 log CFU/mL by Rose Bengal (5 μM) 
combined with blue LED irradiation (455 ± 20 nm) [167]. The 
lower killing efficacy in the latter study [167] was likely 
caused by the complex nature of biofilm, which is composed 

of different pathogens, compared to the homogeneous culture 
of S. mutans [161]. APDT of S. mutans biofilm with erythro-
sine at the same concentration (5 μM), a clinically approved 
PS for dental plaque removal, yielded slightly better results in 
terms of cell killing capacity [168]. Moreover, APDT with 
toluidine blue O (section 2.1) resulted in the eradication of S. 
mutans in 10 days-old biofilm [169]. Toluidine blue O exhi- 
bited no dark toxicity and the efficacy was light dose-depen-
dent. Finally, curcuminoids (section 2.5.2) may be suitable PSs 
for APDT of S. mutans in that curcuminoids exert dual phar-
macodynamic activity. On the one hand, curcuminoids block 
sucrose-dependent adherence of S. mutans to saliva-coated 
hydroxyapatite discs (model for teeth) and inhibit the aci-
dogeni-city and aciduricity of S. mutans biofilms [170]. On the 
other hand, APDT of bacteria photosensitized with curcumin 
induces cell death [95]. The encouraging results notwithstand-
ing, these in vitro results need further in vivo validation. 

5.5. Enterococcus faecalis (Gram-positive) 

E. faecalis mainly resides in the gastrointestinal tract but 
also occurs in root canals with persistent endodontic infections. 
The species is resistant to conventional antibiotic treatment 
[171] and is responsible for causing nosocomial infections.  

Several in vitro studies explored the possibility of eliminat-
ing planktonic E. faecalis as well as its biofilm with APDT 
using cationic PSs such as eosin Y [172], methylene blue [173], 
tetra-Py+-Me [174], and SAPYR (2-((4-pyridinyl)methyl)-1H- 
phenalen-1-one chloride) [174,175]. APDT of root canal 
specimens prepared from extracted teeth infected with E. fae-
calis achieved bacterial reduction of 77.5% when methylene 
blue (6.5 µg/mL) and 60 J/cm2 light dose (665 nm) were ap-
plied [173]. A considerable bacterial reduction (40.5%) was 
also achieved in the control group with only light treatment 
[173], suggesting that the species may produce its own PSs or 
is otherwise sensitive to red light. In another study, the efficacy 
of continuous, repeated, and intermittent APDT with eosin Y 
as PS was compared [172]. It was found that higher dose of PS 
(40 or 80 µM) during continuous or intermittent APDT did not 
increase the bactericidal effect against E. faecalis biofilm, 
which was possibly due to aggregation of the PS at high con-
centration upon irradiation. In contrast, repeated exposure 
APDT (a constant irradiation time of 960 s with 10-s pauses, 
10 or 20 µM of eosin Y), the extent of bacterial cell death was 
96% [172]. Cieplik et al. [174] compared the photodynamic 
efficacy of the new generation PS SAPYR and tetra-Py+-Me in 
E. faecalis. The study revealed that the absolute 1O2 singlet 
quantum yield of SAPYR was about 1/5 of that of tetra-Py+- 
Me due to lower photon absorption. However tetra-Py+-Me had 
no effect against E. faecalis while SAPYR eliminated the 
pathogen by 5 logs [174] in both monospecies and polyspecies 
biofilm. These results collectively show the promising pro-
spects of APDT against E. faecalis in endodontic infections.     
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5.6. Helicobacter pylori (Gram-negative) 

H. pylori resides in the human gastric tract and causes in-
fections that lead to peptic ulcers and gastric cancer [176]. 
Conventional treatment of H. pylori infections includes the 
administration of antibiotics together with proton pump inhib-
itors [177], which often causes undesired side effects such as 
epigastric pain, nausea, and diarrhea [177]. Resistance of H. 
pylori to different antibiotic regimens including amoxicillin, 
clarithromycin, metronidazole, levofloxacin, tetracycline, and 
rifampicin has been reported in regional studies from different 
countries [178-181] and is particularly causing chronic health 
problems in children [182]. Consequently, APDT has been 
employed as a possible, more patient-friendly alternative to 
conventional therapy [183-185].  

Although the stomach is an internal organ, accessibility for 
PSs (oral administration) and laser probes (e.g., endoscopically) 
are not expected to be clinical bottlenecks. In fact, APDT of  
H. pylori does not necessarily have to rely on external PS de-
livery inasmuch as the bacteria naturally produce porphyrins, 
such as protoporphyrin and coproporphyrin, via the heme bio-
synthesis pathway [185]. Accordingly, laser irradiation with 
blue light (~405 nm) without prior photosensitization of cul-
tured H. pylori is sufficient to induce cell death [185]. A clini-
cal study using 405-nm endoscopic light confirmed APDT 
efficacy in eradicating H. pylori colonies in patients [186]. In 
this small scale pilot study, 9 eligible patients received endo-
scopic blue light at a fluence of 40 J/cm2. No administration of 
PS was necessary as H. pylori was able to naturally synthesize 
protoporphyrin IX and coproporphyrin. Consequently, 99% 
bacterial inactivation was achieved. However the exact mech-
anism underlying the photo-inactivation of H. pylori is yet to 
be determined.  

6. Optimization of photodynamic efficacy   

Presently, a major limitation of APDT is the inadequate up-
take of PS by bacteria and hence insufficient photosensitiza-
tion to induce lethality. Studies have explored various means 
to optimize the selective uptake of PSs by bacteria, which in-
clude structural modifications of existing PSs, including con-
jugation of anionic/neutral PSs to cationic polymers/surfaces 
[187-189] and the development of novel PSs [7,190]. Some 
alternative methods are discussed next in addition to those 
already addressed (e.g., chemical perturbation of biofilm (sec-
tion 2.5.1)).  

6.1. Liposomal photosensitizer delivery systems   

Liposomes are nanoscopic fat droplets composed of a 
phospholipid bilayer and an aqueous core. Consequently, lipo-
somes can encapsulate both hydrophilic and lipophilic PSs [32] 
for delivery into bacteria [191]. In fact, liposomes have been 
recommended for these purposes due to their fluidic lipophilic 
nature and the possibility to bear a positive surface charge 

[191]. Cationic carriers can disorganize the native three-  
dimensional architecture of the bacterial cell envelope, thereby 
inducing membrane permeability and easier transmembrane 
passage or settlement of the PS [192]. The increased cytotoxi-
city of liposome-delivered PS relative to control delivery (un-
encapsulated PS) may also be ascribed to the more suitable 
localization of the PS in the cell envelope [191,192]. Proof- 
of-principle for liposomal PS delivery has been provided in 
methicillin-resistant S. aureus and P. gin- gialis, where highly 
cytotoxic APDT was achieved with cationic lipo-
some-delivered ZnPc [193]. Tsai et al. [194] reported that 
APDT with liposomal hematoporphyrin improved therapeutic 
efficacy in gram-positive pathogens such as MSSA, MRSA, 
Staphylococcus epidermidis, and Streptococcus   pyogenes. 
The development and in vitro proof-of-concept of 
ZnPc-containing cationic liposomes (section 2.3) has also been 
described in the context of PDT of cancer cells [32,195,196]. 
These formulations may therefore be useful for APDT. 

6.2. Conjugation of cationic antimicrobial peptides to photo-
sensitizers 

Cationic antimicrobial peptides (CAMPs) such as buforin, 
magainin, and apidaecin are useful antimicrobial peptides that 
may be conjugated to PSs to improve PS-cell association or 
intracellular PS delivery [43,45]. The peptides possess bacterial 
lytic properties and have particular affinity for Gram-negative 
bacteria. The conjugation of these peptides to the PS also 
broadens the therapeutic spectrum of certain PSs that are ini-
tially taken up by only Gram-positive species, including 
5(4’-carboxyphenyl)-10,15,20-triphenylporphyrin [43].  

Another clinically important aspect of peptide conjugation 
is target selectivity. Since the surface of mammalian cells is 
also negatively charged, application of any cationic PS or any 
PS encapsulated in cationic liposomes may target the PS to the 
neighboring healthy cells and cause side effects. Conjugation 
of antimicrobial peptide to cationic (encapsulated) PSs 
[123,197,198] can therefore improve the selectivity towards 
bacteria and reduce the extent of uptake by host cells. 

In terms of APDT efficacy, an LPS-neutralizing peptide 
YI13WF (YVLWKRKRKFCFI-amide) conjugated to proto-
phophyrin IX was shown to have high killing potential in E. 
coli and Klebsiella pneumoniae [199]. Since protoporphyrin is 
taken up by mammalian cells as well, some photosensitization 
of non-target cells is expected. However the authors demon-
strated that the dimeric conjugate exhibited higher selectivity 
towards bacterial cells than the protoporphyrin IX adminis-
tered alone by co-incubating JurKat T cells with E. coli or K. 
pneumoniae during the APDT. This is probably due to the 
higher binding affinity of the conjugate towards the endotoxin. 

6.3. Efflux pump inhibitors  

Efflux pumps play an important role in bacterial drug re-
sistance [200]. These pumps can either export selective anti-
microbial compounds or expel a collection of multiple differ-
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ent compounds with diverse structures. Several PSs, such as 
the amphiphilic cationic phenothiazinium, are substrates of 
multidrug resistance efflux pumps [25] and may therefore be 
removed from the intracellular environment before APDT. 
Hence, inhibition of efflux pump function before photosensi-
tization may improve APDT outcome, as has been demon-
strated in several studies [27,28]. 

Specific export pump inhibitors were combined with seve- 
ral PSs, both cationic (methylene blue) and anionic (Rose 
Bengal), and evaluated in APDT of biofilm-derived Entero-
coccus faecalis [28]. APDT with methylene blue was consid-
erably more cytotoxic to E. faecalis compared to Rose Bengal, 
and the combination with EP inhibitor verapamil hydrochlo-
ride significantly enhanced APDT-induced cytotoxicity by 3 
Log at a relatively low light dose (5 J/cm2). Another study [27] 
showed that the order in which EP inhibitors (the diphenyl 
urea INF271, reserpine, 5'-methoxyhydnocarpin, and the pol-
yacylated neohesperidoside, ADH7; all inhibit S. aureus NorA) 
and PS (toluidine blue O) were applied governs the bacterial 
killing efficacy. When the inhibitor was applied before the PS, 
a superior outcome was achieved. The authors contended that 
simultaneous inhibitor and PS application or administration of 
the PS before the inhibitor would cause competitive binding to 
NorA and hence reduce intracellular PS retention.  

Despite the potential of this combinatorial regimen in APDT, 
no clinical feasibility studies have yet been performed, mainly 
due to the biological instability, poor solubility, and in vivo 
toxicity of some export pump inhibitors [201]. These factors, 
however, do not rule out the utility of this approach for the 
treatment of local infections, such as those that cause dental 
diseases and in superficial skin wounds, where systemic toxi-
city issues can be avoided.    

6.4. Electroporation  

Electroporation is a well-established molecular biology 
technique used to introduce chemicals, drugs, or DNA into the 
cell by transiently permeating the cell membrane with a low- 
voltage electrical current [202]. It is also used clinically to treat 
solid tumors [203], in which case the aim is to use high-vol-
tage electrical current to irreversibly permeate and kill cells.  

Electroporation was applied to both S. aureus and E.coli 
cells to induce pore formation in the outer membrane and in-
crease the delivery of hypericin into the cells [204]. This study 
showed that APDT/electroporation inactivated 3.67 log more E. 
coli and 2.65 log more S. aureus than APDT alone.  

Although no in vivo studies have been performed to date 
with respect to electroporation in combination with APDT, 
such a modality has been reviewed in the context of solid tu-
mors [205]. It was summarized in this review that electro-
poration typically improved the PDT effect in vitro by a factor 
of 2 to 5, depending on the PS, cell line, and electric field con-
ditions. In vivo experiments showed that, when PDT is com-
bined with electroporation, the required effective drug dose is 
lower and the drug-light interval is shorter than PDT alone. 
This reflects the potential utility of electroporation as an adju-

vant step before APDT to optimize bacterial photosensitization. 
It should be noted that electroporation of PSs could increase 
the risk of non-specific photosensitization of host cells, al- 
though this statement warrants experimental evidence.  

6.5. Light source  

Various light sources can be used to activate the PS, ranging 
from lasers and narrow-band LED sources to high-intensity 
broadband light sources [132]. Many factors such as the opti-
cal penetration depth of excitation light, wavelength, fluence, 
and drug-light interval have an impact on the photodynamic 
efficacy [206]. For dental infections and infected superficial 
wounds these factors do not weigh too heavily. For internal 
infections, however, sufficient light delivery to the entire in-
fection site may be a challenge [13].  

Yin et al. [207] used upconverting nanoparticles that can 
absorb near-infrared light (980 nm), which lies in the so-called 
therapeutic window for (A)PDT [32], and convert it to short-
er-wavelength, high-energy photons to induce a photodynamic 
effect. Inasmuch as there are no endogenous chromophores 
that significantly absorb near-infrared light of this wavelength, 
the optical penetration is sufficient to homogenously irradiate 
larger bulks of tissue. The drawback of this technique is that 
another exogenous pharmacological entity (i.e., upconverting 
nanoparticles) must be co-administered with the PS, which 
may lead to systemic or local toxicity issues [208].  

7. In vivo and clinical status quo of antibacterial 
photodynamic therapy  

Numerous in vitro studies corroborate the efficacy of APDT 
in a large variety of bacteria. Although these studies are useful 
in providing initial proof-of-concept and studying intracellular 
pharmacokinetics and PS pharmacodynamics, they do not pro-
vide a solid translational basis for the clinical setting. In that 
respect, in vivo studies represent higher-level data. 

The PSs that have been tested in vivo include phenothia-
ziniums (section 2.1) such as methylene blue [19,209], Rose 
Bengal [210], and EtNBS [188] (Table 1), ZnPc derivative 
RLP068/Cl [211], (Table 1), and C70 fullerene [60,64,68] 
(Table 1), among others. Animal models have been developed 
that mimic clinical infections, including a mouse model of skin 
abrasion caused by MRSA [212] and a guinea pig model of 
burn infections with S. aureus [213]. Moreover, a study com-
pared the efficacy of APDT as an adjuvant treatment to scaling 
and root planning (SRP) of periodontitis in nicotine-modified 
rats [214]. Their results showed lower bone loss when tolui-
dine blue O-APDT was applied in combination with SRP ver-
sus SRP alone, indicating that APDT was an effective adjunc-
tive treatment to SRP for periodontitis. With respect to infected 
burn wounds, a mouse model [215] was established to study 
APDT efficacy in burn wounds infected with drug-resistant P. 
aeruginosa (section 5.3). The bacterial count in the blood-
stream (sepsis) was measured after APDT with hypocrellin 
B:lanthanum (HB:La3+). APDT not only reduced the degree of 
the infection but also successfully lowered the bacterial count 
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in the bloodstream by 2-3 log CFU/mL compared to the con-
trol group. This indicated that APDT could delay bacteremia 
upon infection. The scope of this study therefore could be 
broadened in the sense that APDT could be applied locally to 
achieve control of bacterial levels in patients’ bloodstream to 
improve the efficiency of certain medical treatments, provided 
that sepsis has been a major concern in the hospital [216,217].  

During in vivo APDT experiments, animals are often sacri-
ficed following the intervention to determine the standard bac-
terial count (CFU/mL). Recent developments in these models 
entail the inoculation of the animals with endogenously lumi-
nescent bacteria so that the animals can be followed in real 
time after APDT [210]. The intensity of luminescence can be 
directly correlated to the extent of the infection [210,218]. 
Genetically modified E. coli and P. aeruginosa via transfor-
mation of a plasmid containing the P. luminescens lux operon 
could stably generate bioluminescence [210].  

Clinically, APDT of dental disease is the most commonly 
employed APDT application in patients due to easy accessibil-
ity of the infection site [219]. Tooth decay and periodontitis 
caused by biofilm infection that encompasses different patho-
gens warrant the use several different antibiotics [220]. Con-
sequently, drug resistance is easily developed as a result of the 
often sublethal concentration of antibiotics in the sulcus fluid 
and the chronic use of antibiotics [221-223]. In those cases, 
APDT is considered an ideal alternative treatment [162,168]. 

In the past two years, more than five clinical studies have 
been conducted on the utility of APDT in oral infections 
[224-228]. Only one of the five studies reported no significant 
improvement in periodontal disease in smokers following 
APDT in conjunction with scaling and root planning [226], 
although good results had been obtained in animal studies 
[214]. The other four studies provided compelling support for 
the bactericidal efficacy of APDT in localized dental infectious 
diseases [224-228]. Corroboratively, a recent systematic re-
view yielded favorable results in regard to APDT for the treat-
ment of infected root canals and called for a well-established 
clinical protocol [229]. Moreover, APDT has been suggested 
as an adjunctive treatment after standard endodontic treatment 
[225].  

Following the developments in clinical oral diseases, APDT 
is progressively becoming an acceptable treatment modality 
for chronic and drug-resistant infections [13,22,162,183,230]. 
A PS, PPA904, was evaluated in a phase II clinical trial for the 
treatment of chronic leg ulcer induced by MRSA and yielded 
good bactericidal results. APDT with PPA904 significantly 
reduced the number of patients (18%) who suffered from 
symptoms of infection post-APDT compared to patients who 
received placebo treatment [231]. Another recent clinical study 
reported that APDT of P. aeruginosa-caused skin ulcers in the 
lower limbs resulted in significant bactericidal outcome and 
wound healing-promoting effects [232]. This is in line with a 
previous study in mice, where APDT was shown to reduce the 
hyper-inflammatory response in P. aeruginosa-infected skin 
wounds [233]. Additionally, APDT is also used in the clinical 

management of diabetic foot, which causes sizeable infec-
tion-related complications in diabetic patients. One clinical 
study reported that 17 of the 18 diabetic foot patients who re-
ceived antibiotics plus PDT did not have to undergo limb am-
putation, whereas all the patients who received antibiotics only 
(N = 16) were subjected to limb amputation [234]. Due to the 
limited cohort size and the lack of randomization and double- 
blind conditions, the application of APDT in diabetic patients 
requires more robust clinical evidence.  

Besides the curative prospects of APDT, Huang et al. [235] 
reviewed the encouraging preventative effects of (A)PDT in 
the context of the clinically approved Photofrin. (A)PDT can 
trigger a host immune response even when applied before in-
fections take place, which in turn may contribute to the pre-
vention and treatment of bacterial arthritis. Accordingly, pre-
ventive immunomodulation is a novel field that could be em-
ployed to control the degree of infection by pre-emptively 
priming the host’s immune system. 

8. Adaptive mechanisms in bacteria and therapeutic 
recalcitrance 

To date the putative contention is that bacteria do not de-
velop resistance against APDT, as no resistance has been re-
ported among any bacterial species. Failure of some PSs to 
effectively kill certain bacterial species is due to delivery chal-
lenges and not necessarily the result of resistance. Some PSs 
are substrates of multidrug efflux pumps, as mentioned in sec-
tion 2.1, and may therefore be eliminated from the target cells 
as part of bacterial resistance. Concomitant administration of 
pump inhibitors can counteract these resistance mechanisms.  

Tim Maisch [230] recently described possible routes for 
bacteria to develop resistance towards APDT, which includes 
overexpression of antioxidant enzymes and/or heat shock pro-
teins to protect bacteria from the post-APDT oxidative stress. 
However, APDT-induced oxidative stress occurs very rapidly 
upon illumination, and bacteria are unlikely to acquire re-
sistance in such a short time. Also, since ROS have very short 
lifetimes in biological environments, it is questionable whether 
the synthesis of antioxidants or the transcription and transla-
tion of antioxidant enzymes in response to the acute oxidative 
stress (a process that takes considerably longer) is effective. 
Furthermore, no defense system against singlet oxygen has 
been found so far among bacterial pathogens, pleading for the 
use of type II PSs. Nevertheless, APDT-related resistance is-
sues seem to be a minor concern at this point.  

9. Conclusions  

APDT is considered a promising means to overcome the 
difficulties in treating infections caused by multidrug-resistant 
bacteria.  

The complex structure of the bacterial cell envelope, and 
especially that of Gram-negative species, is the main challenge 
for both conventional treatment and APDT. Although it has 
been suggested that uptake of PSs is not required per se to kill 
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bacteria by APDT, selective PS binding and passage through 
the bacterial cell envelope is favored. The photodestructive 
effect of ROS at multiple intracellular targets, including the 
membrane, is unequivocally the biggest advantage of APDT 
over conventional antibiotic approaches, which often comprise 
a single target. Several measures are available to optimize int-
racellular delivery, which range from functionalization of PSs 
with cationic moieties to pharmacological interventions to  
electroporation and highly technological means of PS excitation.  

Undoubtedly, APDT is still in its infant stage of develop-
ment, but nevertheless harnesses clinical potential in light of 
failing conventional treatments. The pharmacodynamics, phar-
macokinetics, and disposition of PSs, the drug-light intervals 
and laser settings, and the biology of the infection site dictate 
clinical outcome of APDT treatment. In order to implement 
APDT in the clinical setting, most of these parameters still 
need to be determined for the majority of indications. A lot of 
in vitro proof-of-concept work is available. The next phase 
should be in vivo validation of the in vitro findings and small 
clinical proof-of-concept studies in order to push this tech-
nology closer to actually benefitting patients with resistant 
infections. 
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