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Background: Platelets and P-selectin (CD62P) play an unequivocal role in the pathology of hepatic ische-
mia/reperfusion (I/R) injury. Inhibition or knock-out of P-selectin or immunodepletion of platelets results in 
amelioration of post-ischemic inflammation, reduced hepatocellular damage, and improved survival. How-
ever, P-selectin expression on platelets and endothelial cells, which concurs with platelet activation, has 
never been clearly demonstrated in I/R-subjected livers. 
Aims: To determine whether platelets become activated and degranulate in the acute phase of liver I/R and 
whether the platelets interact with neutrophils.  
Methods: Hepatic I/R was induced in male C57BL/6J mice (N = 12) using 37.5-min ischemia time. Plate-
lets, endothelial cells, and neutrophils were fluorescently labeled by systemic administration of non-block-
ing antibodies. Cell kinetics were monitored by intravital spinning disk confocal microscopy during 90 min 
of reperfusion. Image analysis and quantification was performed with dedicated software. 
Results: Platelets adhered to sinusoids more extensively in post-ischemic livers compared to livers not 
subjected to I/R and formed aggregates, which occurred directly after ischemia. Platelets and endothelial 
cells did not express P-selectin in post-ischemic livers. There was no interaction between platelets and 
neutrophils. 
Conclusions: Platelets aggregate but do not become activated and do not degranulate in post-ischemic 
livers. There is no platelet-neutrophil interplay during the early reperfusion phase in a moderate model of 
hepatic I/R injury. The mechanisms underlying the biological effects of platelets and P-selectin in this set-
ting warrant further investigation. 
Relevance for patients: I/R in surgical liver patients may compromise outcome due to post-ischemic oxi-
dative stress and sterile inflammation. Both processes are mediated in part by platelets. Understanding 
platelet function during I/R is key to developing effective interventions for I/R injury and improving clini-
cal outcomes. 
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1. Introduction 

In the last decade the paradigm of platelet function has  
expanded from primary hemostasis to also include intravascu-
lar redox signaling and sterile inflammation. Inasmuch as both 

oxidative stress and a sterile immune response are prominent 
hallmarks of hepatic ischemia/reperfusion (I/R) injury [1,2], 
the role of platelets has been studied in the context of I/R 
damage and post-ischemic liver repair. The main findings of 
these studies are summarized in Table 1.  
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Table 1. Summary of in vivo studies on the role of P-selectin (CD62P), platelets, and leukocytes in warm hepatic ischemia/reperfusion injury. Data   
reported versus controls. 

Ref. 
Major findings 

Species 
[3] • Animal model: 90 min of total hepatic ischemia, 4 h-7 d of reperfusion  

• Administration of anti-CD62P antibodies improved survival and reduced post-ischemic liver damage 
• Anti-CD62P antibodies reduced post-ischemic neutrophil adhesion and migration 

RAT 

[4] • Animal model: 45 min of total hepatic ischemia, 6 h of reperfusion 
• Administration of PSGL-1 reduced post-ischemic liver damage (AST, histology) and inflammation (MPO) RAT 

[5] • Animal model: 20 min left lateral lobe ischemia, 2-24 h of reperfusion 
• Anti-CD62P antibodies and CD62P knock-out (CD62P-/-) reduced the extent of post-ischemic leukocyte recruitment and rolling in sinus-

oidal venules (IFM) MOUSE 

[6] • Animal model: 30 min left lateral lobe ischemia, 20 min – 24 h of reperfusion 
• CD62P expression increased after ischemia (measured by amount of intrahepatic radiolabeled anti-CD62P antibody accumulation) 
• Extent of post-ischemic liver damage (AST, ALT, LDH, histology) was reduced in CD62P-/-animals MOUSE 

[7] • Animal model: 30-120 min of partial (40%) liver ischemia, 1-24 h of reperfusion 
• Post-ischemic liver damage (AST, ALT, histology) and adhesion of PMN leukocytes was reduced in CD62P-/-animals and survival was 

improved (histology) 
• Intrahepatic platelet aggregates in CD62P-/-animals were reduced after 90 min ischemia but increased in CD62P-/-animals after 120 min 

ischemia (CD9 immunostaining of cryosections) 
---------------------------------------------------------------------------------- ---------------------------------------- ----------------------------------------   
NOTE: platelet activation status was not assessed 

MOUSE 

[8] • Animal model: 30 min left lateral lobe ischemia, 30-120 min of reperfusion 
• Extent of post-ischemic leukocyte rolling, saltation, and adhesion in sinusoidal venules was reduced following administration of an-

ti-CD62P antibodies and in CD62P-/-animals (IFM) MOUSE 

[9] • Animal model: 90 min of partial (70-80%) liver ischemia, 3 h of reperfusion 
• Post-ischemic liver damage (ALT) and inflammation (MPO) were reduced in CD62P-/- animals 
• Post-ischemic MIP-1 and MIP-2 levels were lower in CD62P-/- animals MOUSE 

[10] • Animal model: 90 min of partial liver ischemia, 1.5-6 h of reperfusion 
• No differences in post-ischemic liver damage (ALT) between WT and CD62P-/-/ICAM-1-/- mice 
• CD62P-/-/ICAM-1-/- animals exhibited more extensive hepatic neutrophil influx following I/R (histology) MOUSE 

[11] • Animal model: 90 min left lateral lobe ischemia, 60 min of reperfusion 
• I/R induced platelet adhesion in peri-sinusoidal arterioles, sinusoids, and post-sinusoidal venules (IFM) 
• Post-ischemic platelet adhesion was reduced in ICAM-1-/- and anti-fibrinogen antibodies-treated mice (IFM) 
• ICAM-1-/-but not anti-fibrinogen antibodies-treated mice exhibited reduced leukocyte adhesion (IFM) 
• Post-ischemic fibrinogen deposition in in peri-sinusoidal arterioles, sinusoids, and post-sinusoidal venules was abrogated in ICAM-1-/- 

mice (IFM) 
• Anti-fibrinogen antibodies improved sinusoidal perfusion and reduced post-ischemic liver damage (AST, ALT), apoptosis (TUNEL, 

caspase-3), and lipid peroxidation (TBARS) 
---------------------------------------------------------------------------------- ---------------------------------------- ----------------------------------------   
NOTE: platelet activation status was not assessed 
NOTE: platelets were fluorescently labeled ex vivo (rhodamine 6G) and reinfused 

MOUSE 

[12] • Animal model: 90 min left lateral lobe ischemia, 60 min of reperfusion 
• Post-ischemic platelet adhesion in peri-sinusoidal arterioles, sinusoids, and post-sinusoidal venules was reduced in CD62P-/-animals 

(IFM) 
• CD62P-deficient platelets rolled on and adhered to post-ischemic hepatic microcirculation in a similar manner as platelets in WT animals 

(IFM) 
• Platelet rolling and adhesion was abrogated in post-ischemic CD62P-/- livers (IFM) 
• Leukocyte rolling and adhesion was abrogated in post-ischemic CD62P-/- livers (IFM) 
• Sinusoidal perfusion was improved in CD62P-/- livers (IFM) 
• CD62P-deficiency was associated with reduced I/R damage (AST, ALT) and cell death (TUNEL, caspase-3, DNA fragmentation/nuclear 

condensation) (histology) 
---------------------------------------------------------------------------------- ---------------------------------------- ----------------------------------------   
NOTE: platelet activation status was not assessed 
NOTE: platelets were fluorescently labeled ex vivo (rhodamine 6G) and reinfused 

MOUSE 
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(Continued) 

Ref. 
Major findings 

Species 
[13] • Animal model: 30-90 min left lateral lobe ischemia, 20-240 min of reperfusion 

• I/R induced platelet rolling and adhesion in venules and arterioles and accumulation in sinusoids (FM) 
• Platelet adhesion to post-sinusoidal venules correlated negatively with perfusion rate 
• I/R induced thrombocytopenia 
• I/R induced thrombin activation 
------------------------------------------  
NOTE: platelet activation status was not assessed 
NOTE: platelets were fluorescently labeled ex vivo (rhodamine 6G) and reinfused 

MOUSE 

[14] • Animal model: 60 min of partial (70%) liver ischemia, 1 h-7 d of reperfusion 
• Platelets did not contribute to I/R injury (CD41 antibody-mediated depletion and clopidogrel-mediated inhibition of platelet function, 

AST) 
• Pre-ischemic platelet depletion reduced post-ischemic neutrophil infiltration 
• Inhibition of platelet function (clopidogrel) has no effect on post-ischemic hepatic TNF-α, IL-6, IL-1β, MIP-2 levels (RT-PCR) 
• Platelet depletion (CD41 antibodies) had no effect on post-ischemic hepatic TNF-α and IL-1β levels but reduced IL-6 and MIP-2 levels 

(RT-PCR) 
• Platelet depletion (CD41 antibodies) reduced post-ischemic plasma levels of TNF-α and IL-6 (ELISA) 
• Platelet depletion (CD41 antibodies) reduces the extent of post-ischemic (7 d) liver regeneration (PCNA and Ki-67, histology), which is 

mediated by platelet-derived serotonin (Tph1-/-mice) 
---------------------------------------------------------------------------------- ---------------------------------------- ----------------------------------------   
NOTE: platelet activation status was not assessed 

MOUSE 

[15] • Animal model: 60 min of partial (70%) liver ischemia, 30 min - 7 d of reperfusion 
• I/R induced endothelial CD62P expression (immunohistochemistry) and upregulation of hepatic CD62P mRNA (RT-PCR) RAT 

[16] • Animal model: 60 min of partial (70%) liver ischemia, 30 min - 7 d of reperfusion 
• I/R induced platelet adhesion in liver microcirculation 
• Kupffer cell depletion (Cl2MDP) reduced I/R induced platelet adhesion in liver microcirculation (IFM) and the extent of leukocyte influx 

(histology) 
• Post-ischemic sinusoidal endothelial cells and platelets associated with endothelial cells did not express CD62P* (immunohistochemistry 

on cryosections) 
------------------------------------------------------------------------------------------------------------------------------------------------------------------     
* No data were shown 
NOTE: platelets were fluorescently labeled ex vivo (rhodamine 6G) and reinfused 

RAT 

[17] • Animal model: 20 min of complete liver ischemia, 30-90 min of reperfusion 
• I/R induced platelet adhesion in liver microcirculation, which was reduced by the neutrophil elastase inhibitor sivelestat (IFM) 
---------------------------------------------------------------------------------- ---------------------------------------- ----------------------------------------   
NOTE: platelet activation status was not assessed 
NOTE: platelets were fluorescently labeled ex vivo (rhodamine 6G) and reinfused 

RAT 

[18] • Animal model: 20 min of complete liver ischemia, 30-120 min of reperfusion 
• I/R induced platelet adhesion in liver microcirculation (IFM) 
• More than 50% of adherent platelets were associated with Kupffer cells (IFM) 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------   
NOTE: platelet activation status was not assessed 
NOTE: platelets were fluorescently labeled ex vivo (rhodamine 6G) and reinfused 

RAT 

[19] • Animal model: 20 min of complete liver ischemia, 30-120 min of reperfusion 
• I/R induced platelet adhesion in liver microcirculation, which was reduced by the HO-1 inducer CoPP (IFM) 
• More than 50% of adherent platelets was associated with Kupffer cells (IFM) 
• The flow velocity of platelets in post-ischemic sinusoids was increased in CoPP-treated animals compared to untreated animals (IFM) 
---------------------------------------------------------------------------------- ---------------------------------------- ----------------------------------------   
NOTE: platelet activation status was not assessed 
NOTE: platelets were fluorescently labeled ex vivo (rhodamine 6G) and reinfused 

RAT 

[20] • Animal model: 90 min left lateral lobe ischemia, 60 min of reperfusion 
• I/R induced platelet rolling and adhesion in post-sinusoidal venules and accumulation in sinusoids 
• Post-ischemic platelet adhesion in post-sinusoidal venules and sinusoids was reduced by the PAR-4 inhibitor TcY-NH2 (IFM) 
------------------------------------------------------------------------------- ---------------------------------------- ----------------------------------------   
NOTE: platelet activation status was not assessed 
NOTE: platelets were fluorescently labeled ex vivo (rhodamine 6G) and reinfused 

MOUSE 

Abbreviations (alphabetically): ALT, alanine aminotransferase; AST, aspartate aminotransferase; CD31, platelet endothelial cell adhesion molecule (PECAM-1); 
CD41, integrin alpha-IIb; CD49b, integrin, alpha 2 (alpha 2 subunit of VLA-2 receptor); CD62P, P-selectin; Cl2MDP, dichloromethylene diphosphonate; CoPP, 
cobalt protoporphyrin; FITC, fluorescein isothiocyanate; HO-1, heme oxygenase 1; ICAM-1, intercellular adhesion molecule-1 (CD54); IFM, intravital fluores-
cence microscopy; IL, interleukin; I/R, ischemia/reperfusion; LDH, lactate dehydrogenase; MIP, macrophage inflammatory protein; MPO, myeloperoxidase; 
mRNA, messenger ribonucleic acid; PAR-4, protease-activated receptor 4; PCNA, proliferating cell nuclear antigen; PE, phycoerythrin; PMN, polymorphonuclear; 
PSGL-1, P-selectin glycoprotein ligand-1 (CD162); RT-PCR, reverse transcription polymerase chain reaction; TBARS, thiobarbituric acid-reactive substances; 
TNF-α, tumor necrosis factor α; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling deoxynucleotidyl transferase dUTP nick end labeling; WT, 
wild-type. 
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In the early reperfusion phase, warm hepatic I/R is associ-
ated with exacerbated platelet rolling and adhesion in the he-
patic microcirculation [11, 12] and perturbed blood flow[13]. 
This interaction is facilitated by intercellular adhesion mole-
cule-1 (ICAM-1) [11], fibrinogen [11], and protease-activated 
receptor-4 (PAR-4) [20], which is involved in the initiation of 
secondary hemostasis (coagulation) [21]. Inhibition or 
knock-out of P-selectin (CD62P) or immunodepletion of 
platelets results in amelioration of post-ischemic inflammation 
[14], reduced hepatocellular damage [11,12], and improved 
survival [3], altogether attesting to a role of platelets and 
P-selectin in post-ischemic hepatopathology. 

As such, Khandoga et al. [11] postulated (or concluded) that, 
since “activated platelets are able to generate reactive oxygen 
radicals and nitric oxide and to release pro-inflammatory me-
diators, …activated platelets have the potential to induce I/R 
injury by both direct impact and aggravation of microcircula-
tory derangements.” Despite the apparent involvement of 
platelets in I/R injury, Woolbright and Jaeschke [22] recently 
questioned whether the data available to date unequivocally 
corroborate a mediatory role of platelets in post- ischemic in-
jury or platelet activation. On the basis of Table 1 it can be 
concluded that post-ischemic platelet activation and corollary 
degranulation (surface exposure of P-selectin), i.e., the trigger 
for the inflammatory processes, repair mechanisms, and the 
initiation of secondary hemostasis, have indeed never been 
closely investigated. 

Accordingly, we have conducted several focused hepatic 
I/R experiments in mice using intravital spinning disk confocal 
microscopy and platelet labeling [23] to elucidate the platelet 
activation status in the acute reperfusion phase (0-90 min) [1]. 
The experiments yielded some unexpected and contradictory 
findings. Platelet aggregation occurred in the hepatic micro-
circulation during the acute reperfusion phase but was not as-
sociated with degranulation, which is necessary for the bio-
logical effects reported in literature (Table 1). Evidently, these 
findings have important implications on the regulatory role of 
platelets in hepatic I/R.  

2. Materials and Methods 

All supplementary material is indicated with a prefix ‘S.’ 

2.1. Animal model and surgery 

The study was approved by the animal ethics committee of 
the University of Calgary (protocol#AC12-0162) and all ani-
mals were treated in accordance with the Guide for the Care 
and Use of Laboratory Animals (NIH publication 85-23, rev. 
2011). Male C57BL/6J mice (N = 12, Charles River, Montreal, 
Quebec, Canada) weighing between 22-25 g were housed un-
der standard laboratory conditions with ad libitum access to 
regular chow and water. The animals were acclimated for at 
least 2 d before entering the experiment. 

Mice received analgesia by subcutaneous administration of 
buprenorphine (0.06 mg/kg, Temgesic, Schering-Plough,   

Kenilworth, NJ) following induction anesthesia with isoflurane 
(2.5% isoflurane in O2, 1 L/min, Forene, Abbott Laboratories, 
Queensborough, UK). Anesthesia was subsequently main-
tained with isoflurane (1.5% in O2, 0.5 L/min) during the ex-
perimental procedure. Body temperature was measured with a 
rectal temperature probe and was maintained at 37 °C with a 
heating pad (Fig. S1A, orange pad) connected to a self-regula-
ting TR-200 homeothermic temperature controller (Fine Sci-
ence Tools, Heidelberg, Germany). The unit automatically 
adjusted the temperature of the heating pad on the basis of the 
signal received from the rectal temperature probe. The animals 
were fixed dorsally onto the heating pad, which in turn was 
secured to a mobile microscope stage (Fig. S1A) placed on a 
Vibraplane optical table (Kinetic Systems, Boston, MA) for 
surgery and intravital microscopy.  

Following a midline laparotomy, the left medial-, right me-
dial- , and left lateral lobes were exteriorized, gently retracted 
cranially, and secured with a PBS-drenched gauze as described 
in [24]. The liver hilus was mobilized and 70% ischemia was 
induced by clamping the portal and arterial blood supply with 
a 4 × 1-mm microvessel clip (MEHDORN, Aesculaep, Center 
Valley, PA) [24]. Following 37.5-min ischemia, which is asso-
ciated with moderate liver injury [24], the clip was removed 
and a customized metal transabdominal stage (Home Depot, 
Calgary, Alberta, Canada) was placed over the animal’s abdo-
men (Fig. S1A) as described in [25]. The transabdominal seg-
ment of the stage was convexly shaped and wrapped in gauze 
to ensure proper fixation of the liver lobe, elimination of 
breathing artifacts, and an optimal focal plane during intravital 
microscopy. The stage-wrapped gauze was wetted with 0.9% 
NaCl solution and the left lateral lobe was gently flipped onto 
the stage and fixed with acryl-based tissue glue (Vetbond tis-
sue adhesive, 3M Animal Care Products, St. Paul, MN) at the 
distal and lateral ends of the lobe (relative to the head). Fol-
lowing a flush with 0.9% NaCl solution, the liver lobe was 
covered with saran wrap to prevent desiccation [25]. The saran 
wrap was secured to the stage with a thin strip of tape (not 
over the liver) and the liver lobe was imaged by intravital mi-
croscopy (Fig. S1B). 

2.2. Systemic cell labeling for intravital microscopy 

Antibodies were added to sterile 0.9% NaCl solution (B. 
Braun Melsungen, Melsungen, Germany) to a final infusion 
volume of 100 μL. The used antibodies and antibody concen-
trations were: sinusoidal endothelial cells: rat anti-mouse 
CD31-PE, 10 μL of 200 μg/mL (cat.#12-0311-83, clone 390, 
eBioscience, San Diego, CA) or rat anti-mouse CD31-Alexa 
Fluor 647, 5 μL of 1000 μg/mL (cat.#16-0311-85, clone 390, 
eBioscience, labeled with Alexa Fluor 647 protein labeling kit, 
cat.#A-20173, Life Technologies, Carlsbad, CA); resting 
platelets: hamster anti-mouse CD49b-Alexa Fluor 647, 7 μL of 
500 μg/mL (cat.#103511, clone HMα2, Biolegend, San Diego, 
CA); activated platelets, rat anti-mouse CD62P-FITC, 10 μL 
of 500 μg/mL (cat.#553744, clone RB40.34, BD Pharmingen, 
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Figure 1. Intravital imaging of platelet aggregation and platelet activation status following hepatic I/R in mice. (A-D) Platelet aggregates (red (CD49b), arrows) in 
hepatic microcirculation (blue, CD31) as a function of reperfusion time (left bottom, all imaging panels). Representative panels are shown per time point, taken 
from the video footage of 3 animals. Scale bar applies to all panels. (E) The mean pixel intensity per fluorescence channel (y-axis) was quantitated for each time 
point (x-axis) for every experimental group (resting platelets following I/R (CD49b + I/R), resting platelets in sham-operated animals (CD49b – I/R), and activated 
platelets following I/R (CD62P + I/R)) using FiJi/ImageJ software. Platelet fluorescence (flu) was normalized to endothelial fluorescence (mean ± SEM, sample 
size is given in parentheses in the legend). (F-H) Absence of P-selectin staining (green, CD62P) in post-ischemic liver microcirculation (blue, CD31). Incidental 
P-selectin-positive foci are indicated with arrows, corresponding to the same location at different reperfusion times. (I-L) Absence of platelet (red, CD49b) and 
neutrophil (green, Gr1) colocalization in post-ischemic hepatic microcirculation (blue, CD31). The quadrant corresponds to the same location at different reperfu-
sion times, whereas the time lapse series in I-L correspond to panel C. Note the gradual increase in platelet aggregation in the demarcated region in this animal. 
 
Franklin Lakes, NJ); neutrophils: rat anti-mouse Ly-6G 
(Gr-1)-FITC, 10 μL of 500 μg/mL (cat.#108406, clone 
R86-8C5, BioLegend). The mixture was infused into the pe-
nile vein directly before surgery using a 1 mL insulin syringe, 
after which the puncture wound was sealed with an elec-
tro-surgical cauterizer. Before the liver I/R experiments, in 
vivo thrombus staining by the CD62P-FITC antibodies was 
verified in a puncture-induced thrombosis model in the murine 
saphenous artery (N = 2, Fig. S2). 

2.3. Intravital microscopy 

Intravital microscopy was performed with a Quorum Wave 
FX-X1 spinning disk confocal system that consisted of an up-
right Olympus IX51 microscope (Olympus Corporation, To-
kyo, Japan) equipped with a Yokogawa CSU-X1 scan head 
(Yokogawa Electric, Tokyo, Japan), a back-thinned Hamama-
tsu EMCCD camera (model C9100-13, Hamamatsu Photonics, 
Hamamatsu City, Japan), and 491-, 561-, and 640-nm excita-
tion lasers. The following emission filters were used for the 

antibody-conjugated fluorophores: 536 ± 40 nm (CD62P- 
FITC and Gr-1-FITC), 593 ± 40 nm (CD31-PE), and 692 ± 40 
nm (CD31-Alexa Fluor 647 and CD49b-Alexa Fluor 647), 
respectively. The emission filters were under the control of a 
MAC 6000 Modular Automation Controller (Ludl Electronic 
Products, Hawthorne, NY). Imaging was performed with an 
Olympus UPlanFL-N, 10×, NA = 0.2 objective. The hardware 
settings were kept constant during all experiments (FITC 
channel: laser power 60, exposure time 80 ms, camera gain 1, 
camera sensitivity 209; PE channel: laser power 71, exposure 
time 120 ms, camera gain 1, camera sensitivity 224; Alexa 
Fluor 647 channel: laser power 85, exposure time 120 ms, 
camera gain 1, camera sensitivity 171). Image acquisition was 
performed under Volocity software control (Version 6.3.1,  
Perkin Elmer, Waltham, MA). Image acquisition was per-
formed for 1 min at a frame rate of 11 Hz (3 fluorophores) or 
13 Hz (2 fluorophores) after removal of the microvascular clip 
(the time interval between clip removal and image acquisition 
was on average 4 min) and at t = 4 + 15, 30, 45, 60, 75, and 90 
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min reperfusion. The abdominal cavity was hydrated via the 
base of the liver lobe after each image acquisition sequence 
with a syringe containing 0.9% NaCl solution (37 °C). 

2.4. Image analysis 

Image analysis was performed using ImageJ/FIJI (NIH, 
Bethesda, MD). Volocity files were imported into Fiji as col-
orized hyperstacks using the Bio-Formats Importer. After split-
ting the fluorescence channels, the total pixel intensity per 
frame was measured for each channel using FIJI’s automated 
analysis module (“analyze→measure”). The fluorescence in-
tensity from platelets (i.e., CD62P or CD49b) was first nor-
malized per frame to the fluorescence intensity from endothe-
lium (i.e., CD31) to correct for loss-of-focus within the ROI 
during image acquisition. Subsequently, the normalized pixel 
intensity per frame was averaged per time point (i.e., the mean 
normalized pixel intensity of 11 or 13 frames was calculated 
for each 1-min imaging sequence). Data are presented as the 
mean platelet fluorescence/endothelial fluorescence ratio per 
time point. 

3. Results 

First, systemically labeled platelets (CD49b-Alexa Fluor 
647, pan-platelet staining) adhered to sinusoids more exten-
sively in post-ischemic livers (Fig. 1A-E) compared to livers 
not subjected to I/R (Fig. S3) and formed aggregates, which 
occurred from the very onset of reperfusion. It is therefore 
likely that platelet-vascular wall interactions transpired mainly 
during ischemia, particularly since the platelet aggregates did 
not notably increase during 90-min reperfusion and were not 
abundantly present in sham-operated animals (Fig. 1E). Sec-
ond, P-selectin staining of activated platelets and endothelial 
cells was entirely absent in post-ischemic livers (Fig. 1F-H), 
indicating that neither α-granule nor Weibel-Palade body se-
cretion from platelets and endothelial cells, respectively, oc-
curs during ischemia and early reperfusion. Third, to investi-
gate the interplay between platelet aggregates and neutrophils 
(demonstrated in [26]), systemic staining was performed for 
endothelium (CD31-PE), platelets (CD49b-Alexa Fluor 647), 
and neutrophils (Gr-1-FITC) before the induction of I/R. Of 
note, platelet-neutrophil interactions are facilitated by glyco-
protein Ibα (CD42b) [26], which were not blocked by the 
mentioned fluorescently labeled antibodies. As shown in Fig. 
1I-H, there was no notable heterotypic aggregate formation 
that involved platelets and neutrophils. Whereas the extent of 
platelet aggregate formation remained relatively stable over 
the reperfusion time (Fig. 1E), the influx and adhesion of neu-
trophils increased with reperfusion time (manuscript in prepa-
ration).  

4. Discussion 

Taken together, these data demonstrate that [a] platelets ag-
gregate but do not become activated in post-ischemic livers 

and [b] there is no platelet-neutrophil interplay during the early 
reperfusion phase. Platelet aggregation following liver I/R in 
mice was visualized with spinning-disk intravital confocal 
microscopy using fluorescent anti-CD49b antibodies as an in 
vivo pan-platelet label. Although the use of anti-CD49b anti-
bodies deters a potential interaction of platelets with certain 
substrates (e.g., collagen [27]), this staining method has a high 
labeling efficiency, does not affect platelet phenotype [23], and 
obviates the need for intricate ex vivo platelet staining proce-
dures that may affect platelet phenotype or function [28]. The 
finding that platelets adhere extensively to sinusoidal endothe-
lium during the first 90 min of reperfusion is in line with pre-
vious intravital imaging observations in murine liver I/R mod-
els [11-13;20;29]. However, the biological significance of this 
phenomenon is less clear. As mentioned in the introduction, 
platelet aggregation has been causally linked to, e.g., micro-
vascular perfusion defects, apoptotic cell death, vascular oxi-
dative stress, and an inflamed endothelium [11-13;20], all al-
luding to a pathophysiological connection between platelets 
and surgery-induced hepatopathology. There are, however, 
important considerations that need to be kept in mind when 
interpreting the results from the cited studies.   

The parameter that has been most extensively used to study 
platelet function in liver I/R is P-selectin, which is released 
from α-granules during platelet activation and is subsequently 
expressed on the platelet outer membrane leaflet to facilitate 
thrombosis via platelet-platelet and platelet-neutrophil interac-
tions [12]. Although P-selectin-deficient animals generally 
exhibit an attenuated liver I/R injury profile (Table 1), sug-
gesting pathological platelet behavior, this genetic model does 
not differentiate between platelet and endothelial P-selectin. 
This distinction is crucial insofar as endothelial P-selectin ena-
bles leukocyte adhesion in postsinusoidal venules under in-
flammatory conditions [30-32], which could explain the hepa-
toprotective efficacy of a generalized P-selectin deficiency. In 
addition, it has been posited that anti-P-selectin therapies re-
duce hepatic I/R injury via protective effects on the intestinal 
microcirculation [32] rather than through direct effects on the 
liver, which underscores that a more targeted approach is nec-
essary to selectively explore platelet P-selectin function. In 
light of these considerations, it should be noted that endotheli-
al P-selectin expression was not observed during the first 90 
min of reperfusion in the current experiments (Fig. 1F-H), 
which might be due to the fact that leukocyte adhesion typi-
cally occurs at later stages of I/R injury (i.e., the chronic 
reperfusion phase [1]) and/or the fact that sinusoidal endothe-
lium mainly relies on ICAM-1 instead of P-selectin to immo-
bilize chemoattracted leukocytes following hepatic I/R. The 
latter may also relate to the reported absence of 
P-selectin-containing Weibel-Palade bodies in sinusoidal en-
dothelial cells, albeit contradictory findings on this subject 
have been published (discussed in [33,34]). 

In order to properly assess platelet function under inflam-
matory conditions, it is imperative to also determine platelet 

doi:%20http://dx.doi.org/10.18053/jctres.201502.001


 van Golen et al. | Journal of Clinical and Translational Research 2015; 1(2): 107-115 113 
 

Distributed under creative commons license 4.0        DOI: http://dx.doi.org/10.18053/jctres.201502.001 

activation status, which is a frequent omission in plate-
let-centered liver I/R studies ([22], see also Table 1). Using a 
validated antibody-based in vivo P-selectin labeling method 
(Fig. S2), it was shown that liver I/R in mice triggers platelet 
aggregation without notable P-selectin expression (Fig. 1F-H), 
which deviates from the putative platelet activation paradigm. 
Several factors could explain this observation. First, platelets 
can form reversible aggregates based on integrin-fibrinogen or 
integrin-endothelial interactions only, which can occur inde-
pendently of α-granule (i.e., P-selectin) release and does not 
require soluble platelet agonists such as ADP or thrombin 
[35-37]. Based on Fig. 1I-L, however, the reversible nature of 
such aggregates is entirely absent given the fact that all aggre-
gates in the demarcated region are expanding in time over a 
90-min time span. Alternatively, and more plausibly, autocrine 
and/or paracrine signals may terminate the platelet activation 
cascade before α-granule secretion takes place [38]. Such sig-
nals can be either derived from platelets (e.g., release of tissue 
factor pathway inhibitor and/or protein S) or mediated by ac-
tivated endothelium (e.g., through production of prostacyclin 
I2 and/or nitric oxide) [38]. Tissue factor pathway inhibitor and 
protein S are localized in intracellular storage granules of 
platelets and endothelial cells and hence require activa-
tion-stimulated degranulation and release [39-42] to become 
biologically available. The lack of degranulation in aggregated 
platelets and endothelial cells, as evidenced by the absence of 
P-selectin-positive staining, therefore precludes that this 
mechanism was mediated by intracellular tissue factor path-
way inhibitor and protein S. However, tissue factor pathway 
inhibitor and protein S are abundant in plasma [43,44] and 
could therefore facilitate the activation of the cas-
cade-terminating process.  
  Notwithstanding the lack of P-selectin expression, Fig. 
1A-D unequivocally confirm that platelets aggregate exten-
sively during early reperfusion, leading to complete obstruc-
tion of the vascular lumen in some sinusoids. It is unclear 
whether this extent of platelet aggregation can occur inde-
pendently of P- selectin release and corollary coagulation ac-
tivation (i.e., thrombus formation). With respect to the latter, 
thrombosis following I/R has only been documented by one 
research group in rats [29], albeit a disproportionally severe 
I/R injury model was employed. On the other hand, our group 
has shown that the coagulation cascade is activated following 
I/R in rats (30 min partial liver ischemia), which resulted in 
thrombin and fibrin formation in the acute reperfusion phase 
(30 min) [45]. Thrombin and to a lesser extent fibrin [46] in-
duce platelet activation and aggregation, which begs the ques-
tion why no P-selectin exposure was observed. 

Consequently, the findings in this study render the throm-
bosis paradigm in liver I/R injury equivocal and elusive for 
two reasons. First, the most important biological processes that 
lead to intravascular thrombosis, which include platelet aggre-
gation, endothelial damage, and innate immune activity, are 
well-established liver I/R injury hallmarks. It was therefore  

 

 
Figure 2. Absence of platelet-neutrophil interactions after hepatic I/R in mice. 
Systemic triple staining and intravital imaging of platelets (red), endothelium 
(blue), and neutrophils (green) was performed as described in sections 2.2 and 
2.3, and [23]. Panels A and B show close-ups of I/R-induced platelet plugs and 
sinusoidal neutrophil adhesion, respectively. In contrast to recent venous 
thrombosis literature [26], neutrophils did not mediate the formation of platelet 
aggregates after I/R, as evidenced by the lack of neutrophil-platelet co-location 
(C, D). Scale bar = 30 μm. 
 
expected that thrombosis, during which P-selectin is translo-
cated to the outer membrane such that systemically adminis-
tered antibodies can bind, would be detected. Second, local 
perfusion deficits have been routinely described in murine 
liver I/R models [47]. However, (micro)vascular perfusion 
failure has been attributed to vasoconstriction, edema [45], and 
consequent leukocyte plugging rather than platelet aggregation. 
The data presented here present an inverse scenario, in which 
platelet aggregates actually occlude the vascular lumen first, 
with an apparent minor role for neutrophils or neutro-
phil-platelet interactions (Fig. 2) in the acute reperfusion phase. 
This finding is in agreement with the paradigm that neutrophils 
are slow to accumulate during the first hours of reperfusion 
and in this stage do not (yet) contribute significantly to oxida-
tive stress [48]. Any effect of platelets on neutrophils, if there 
is one, therefore only has very limited impact on the patho-
physiology of liver I/R injury.  

Collectively, these findings place the biological significance 
of platelets in post-ischemic liver pathology in a different light. 
Owing to their established involvement in thrombotic and in-
flammatory processes, platelets are often deemed harmful by 
default. Recent reports, however, challenge this claim. First, it 
has been shown that immunodepletion of platelets using CD41 
antibodies does not protect mice from hepatic I/R injury, but 
does delay functional liver recovery in the long run [14]. Cor-
roboratively, it has been postulated that platelets relay the pro-
tective signals of remote ischemic preconditioning [49] and are 
essential for the liver to regenerate properly following a partial 
liver resection [50,51]. The same trend is seen in immunologi-
cal platelet studies, which increasingly recognize that platelets 
are not merely cytokine factories, but also coordinate antimi-
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crobial responses in close collaboration with Kupffer cells [52]. 
Insofar as an association between platelets and KCs has been 
repeatedly shown in murine liver I/R studies [18,19], these 
findings indicate that platelets might actually play a beneficial 
role in liver I/R injury.  

In summary, it is concluded that platelet aggregation in 
post-ischemic livers does not abide by the putative throm-
bosis-inflammation mechanisms [26]. How platelets aggregate 
without becoming activated and how they mediate the biolog-
ical and immunological processes alluded to previously and in 
Table 1 without degranulating should be subjected to experi-
mental scrutiny. 
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