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ABSTRACT

Background: Machine learning (ML) has emerged as a branch of artificial intelligence dealing with 
the analysis of large amounts of data. The applications of ML algorithms have also expanded to health 
care, including dentistry. Recent advances in this field point to future improvements in diagnostic 
techniques and the prognosis of various diseases of the teeth and other maxillofacial structures.
Aim: The aim of this literature review is to describe the basis for ML being applied to different dental 
sub-fields in recent years, to identify typical algorithms used in the studies, and to summarize the 
scope and challenges of using these techniques in dental clinical practice.
Relevance for Patients: The proficiency of emerging technologies that have begun to show 
encouraging results in the diagnosis and prognosis of oral diseases can improve the precision in the 
selection of treatment for patients. It is necessary to understand the challenges associated with using 
these tools to effectively use them in dental services and ensure a higher quality of care for patients.

1. Introduction

Artificial intelligence (AI) can be defined as the non-biological ability of a machine 
trying to imitate human intelligence to accomplish complex tasks, such as problem-solving, 
object and word recognition, and decision-making [1-4]. The first reports of its applicability 
in Medicine appeared in the early 1970s, with the advent of some experimental computer 
systems [5,6] and new surgical research by Gunn, who explored the possibility of diagnosing 
acute abdominal pain with computational data analysis [7].

The major advances in the use of AI techniques in Medicine have been limited to the 
prognosis and diagnosis of diseases or health events, thereby enabling clinical decision-
making through the application of machine learning (ML) algorithms that use supervised 
learning [8]. Accordingly, several examples support the promising findings that have 
resulted from the application of these technologies, further encouraging their use [9-15].

The use of ML has also been expanded to other domains of healthcare, including dentistry. 
According to the PubMed repository records, reports describing the favorable results of the 
application of these techniques in various clinical disciplines in dentistry began to appear 
in the early 1990s. The scientific literature on the subject highlights orthodontics as one of 
the specialties where the use of ML has brought palpable benefits, especially through the 
extraction of characteristics from radiographic images [16-22]. Many studies using data 
mining have yielded reliable results for differential diagnosis of a wide range of oral diseases 
[23,24]. These reports indicate high accuracy in diagnosis, allowing the standardization of 
procedures and time optimization in the analysis of large databases. In addition, the previous 
studies report advances in Cariology, both in the generation of predictive risk models and in 
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the estimation of useful patterns in the diagnosis of dental caries 
[25-32]. Thus, the recent application of ML in these fields may 
lead to future improvements in diagnostic techniques and in the 
prognosis of various diseases of the teeth and other maxillofacial 
structures [6].

However, there are few records that summarize the primary 
applications of ML in the wide spectrum of dental sub-fields 
and discuss the key factors guiding the application of these 
technologies in dental practice. Although the subject has gained 
importance in recent debates, most of the previous reviews focus 
on areas such as dental imaging and address specific algorithms. 
This is comprehensible if we take into account that the use of 
ML may not be the best solution for every problem. Even so, in 
recent times, there are several reports that bring the use of ML 
to other dental disciplines. Therefore, it is crucial to identify 
the impact of these techniques in the broad field of dentistry. 
Further, the challenges associated with the clinical application of 
these tools, such as the selection of dental datasets and reference 
standards, need extensive debate, and discussion [4,6,33-35]. 
A comprehensive analysis of the current use of these techniques 
to support the decision-making of professionals would be of great 
interest to improve clinical judgment, reduce errors in diagnosis, 
and lower treatment costs in the dental office environment.

In this review, we describe the basis for ML being applied to 
dentistry and summarize the primary ML-based approaches in 
different dental sub-fields in recent times. We also analyze the typical 
algorithms used in studies that apply ML methodologies. Finally, we 
discuss some key factors that may guide the practical implementation 
of these technologies based on the current trends in this field.

2. Fundaments of ML

2.1. ML

Recent years have seen rapid growth in data recording efforts 
due to the ability of computer systems to store and share large 
volumes of information. This explosion of information has often 
been called “big data.” Therefore, it has become necessary to 
develop new procedures that combine statistical (mathematical) and 
computational patterns in the analysis and critical interpretation of 
datasets, to obtain valid criteria and make effective predictions [36]. 
In this context, ML emerges as a branch of AI that involves the 
analysis of large amounts of data [2]. ML algorithms learn from the 
previous examples, performing useful inferences to assist decision-
making [37,38]. In the ML environment, the goals are focused on 
the recognition of significant data patterns within datasets as well 
as in proposing models that best explain the data [39].

2.2. ML paradigms

At present, the advances in these technologies allow for 
distinguishing between various types of learning methods and 
algorithms for data pattern recognition. Supervised, unsupervised, 
and reinforcement learning paradigms have been widely accepted 
for this purpose [39-41].

In the domain of supervised learning, ML operates through 
mapping functions between the available input and output 

variables [39]. It contributes to the enrichment of the analysis, 
bringing them closer to true or established criteria by involving 
labeled variables. This offers an advantage for its implementation 
in medical practice, replacing or complementing expert opinions 
in solving various problems. Supervised learning is recognized 
as the most widely used and promising approach in this field. 
These techniques had been generally used in dentistry for the 
prediction of some events or diseases [25,42], as well as in 
the diagnosis and classification of specific dental and oral-
maxillofacial conditions [43-45].

In contrast, unsupervised learning approaches involve 
algorithms that are executed only from input data [39]. Here, 
the algorithm is trained for finding similarities, allowing for 
non-linear and interactive combinations of various predictors, 
identifying patterns in the data, and achieving reliable results in 
the analyses performed. Unlabeled dental patient databases allow 
for the recognition of labels like those related to certain patterns 
of bone loss associated with periodontal disease. This can create 
clusters that allow further analysis. The techniques described 
above can also be combined in a semi-supervised approach [46].

Finally, reinforcement learning can be represented as an 
extension of dynamic programming techniques, in which the 
underlying model is arrived at through complex mechanisms 
of positive reward and punishments [47]. In dental clinical 
practice, the high precision of algorithms using reinforcement 
learning has become evident in applications involving image 
processing [38,48-51].

2.2.1. Clinical Applications of ML Algorithms in Dental Practice

We conducted a review of original studies that reported 
applications of ML algorithms in different fields of clinical dental 
practice published during the past 10 years. The electronic literature 
search included publications from the PubMed/Medline database 
up to March 2021, as well as some references cited in the reviewed 
papers. The search strategy employed a combination of controlled 
vocabulary and keywords: “artificial intelligence”[MeSH 
Terms] OR “machine learning”[MeSH Terms] OR “supervised 
machine learning”[MeSH Terms] OR “unsupervised machine 
learning”[MeSH Terms] OR “deep learning”[MeSH Terms] 
AND “prognosis”[MeSH Terms] OR “diagnosis”[MeSH Terms] 
OR “treatment”[MeSH Terms] AND “dentistry”[MeSH Terms] 
OR “oral health”[MeSH Terms] OR “teeth”[MeSH Terms] OR 
“orthodontics”[MeSH Terms] OR “periodontal diseases”[MeSH 
Terms] OR “operative dentistry”[MeSH Terms] OR “oral 
surgery”[MeSH Terms] OR “prosthodontics”[MeSH Terms] OR 
“endodontics”[MeSH Terms] OR “implants and prostheses”[MeSH 
Terms] OR “ dental implants”[MeSH Terms] OR “pediatric 
dentistry”[MeSH Terms] OR “dental radiography”[MeSH Terms] 
OR “radiology”[MeSH Terms] OR “forensic dentistry”[MeSH 
Terms] OR “oral medicine”[MeSH Terms] OR “maxillofacial 
surgery”[MeSH Terms]. Review papers, case series, case reports, 
editorials, letters, comments, conference abstracts, and papers 
limited to describing educational methodologies or the use of 
robotic devices were excluded from the search. A total of 542 
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titles were initially identified. After analyzing the abstracts of the 
studies that met the eligibility criteria, 62 papers were included 
in this review. In this review, we provide detailed comments on 
these findings and discuss some interesting aspects of the main 
ML algorithms used in these reports.

3.1. Applications in orthodontics (Table 1)

The vast majority of ML applications in dental clinical practice 
appear to be linked to diagnostic abilities. In this sense, ML 
algorithms have allowed us to optimize and improve the use of 
available data in Orthodontics, with substantial contributions to 
the diagnosis of dental maxillofacial anomalies for the assessment 
of treatment needs through the use of training datasets containing 
radiographic images [16,17,19,20,22,50,52-57].

A previous study in this sub-field successfully extracted the 
landmarks for craniofacial features and analyzed cephalometric 
variables to provide accurate diagnoses of dental deformities  [53]. 
Standard procedures for cephalometric analyses are liable to multiple 
errors resulting from frequent deviations between the locations 
of various observers. AI techniques contribute to improving these 
procedures. In this proposal for automated dental deformity diagnosis 
methods, support vector machine (SVM) algorithms showed the 
best performance (98% accuracy) in comparison to the accuracy 
of other classifiers. SVM-based models have gained popularity in 
the ML community. These classifiers are the most effective means 
of separating data in multidimensional space  [58,59]. It is possible 
to use this method to reduce the requirement for the number of 
images and increase the speed of the analysis when compared to the 
performance of the dentist. SVM algorithms have been described as 
appropriate for learning tasks in which the number of characteristics 
is large. Moreover, the complexity of SVM is not altered by the 
number of functions found in the training set, which is a desirable 
property for its practical applications [60].

Several studies point to the success of the application 
of different types of neural networks algorithms in the 
segmentation, automatic detection, analysis, and extraction 
of image features, to enable more effective diagnosis in 
Orthodontics [16-19,21,22,50,54-57,61]. A recent study that used 
convolutional neural networks (CNNs) algorithms with a large dataset 
achieved high-quality training, generating a high-precision model for 
the analysis of cephalometric data. The model corresponded well with 
the criteria chosen by experienced human examiners, thus meeting 
the gold standard at a faster rate [22]. The use of CNNs algorithms 
has been widely disseminated in dentistry and it is recognized that 
these algorithms can create significant improvements in the quality 
of images by reducing dispersion and artifacts [35,41]. These deep 
learning algorithms are a priority in complex tasks in which there is 
a large amount of unstructured data, as would be the case with the 
classification of dental images, where their effectiveness has already 
been established. These classifiers have the ability to recognize 
hidden relationships between interdependent variables and estimate 
decision rules. They are preferred when precision is prioritized. 
However, classical algorithms are more useful for simple tasks in 
which there is no unstructured data and the interpretability of results 
is of higher priority [22,35,41].

Recent research has encouraged the use of neural networks 
for prediction tasks [18]. Hybrid genetic algorithms and artificial 
neural networks (ANNs) have been implemented in order to 
establish a prognosis of the size of non-erupted canines and 
premolars during the period of mixed dentition. The impacts of 
orthognathic treatment on facial attractiveness and age appearance 
for common patients and patients who have undergone cleft 
treatment have also been explored by applying CNNs [21,61]. 
One particular study does not recommend the application of CNNs 
algorithms in some cases [61]. However, the report describes 
possible limitations related to the characteristics of the study 
population and the specific scores used to measure the perception 
of physical attractiveness. These limitations may have contributed 
to the negative outcome of using CNNs.

It is necessary to emphasize that to achieve high clinical 
precision with the use of neural network algorithms, it is advisable 
to increase the training data set, obtain better estimates of the 
weights of the connections, and increase the classification and 
predictive power. Furthermore, hybrid dental data collected on 
a large scale from multiple healthcare institutions and public 
registries could be useful during the training phase. Interested 
researchers should collaborate and share their data collections to 
bring new advances in this field [62].

3.2. Applications in periodontics (Table 2)
In the field of periodontics, ML algorithms have demonstrated 

a good performance in working with molecular profile data, 
immunological parameters, bacterial profiles data, or clinical 
and radiographic variables of affected patients [42,63-67]. 
Identification of bone levels, identification of bacteria in 
subgingival fluid samples, and analysis of gene expression 
profiles from periodontal tissue biopsies are crucial for obtaining 
clear evidence in the specific diagnosis of periodontal disease. 
This diagnosis could be complex for early practitioners during 
routine examinations, and the use of ML techniques can be 
highly productive in such cases. Most of these studies used 
SVM as the classifier in the analysis [63-65,67]. Two of the 
studies [64,67] used other algorithms such as naïve Bayes, 
ANNs, and decision tree algorithms. A decision tree provides a 
hierarchical organization from a root node, which is at the highest 
hierarchical level. It is commonly argued that the decision tree 
has high explanatory capacity and transparency, and also provides 
comprehensibility in the analysis [60]. Several authors have made 
suggestions to further improve the effectiveness and simplicity of 
the models [68,69]. Further, the use of ensemble methods makes it 
is possible to construct more robust tree models, such as bootstrap 
aggregated (or bagged) decision trees, random forest trees, and 
boosted trees. In the case of naïve Bayes, it is considered simple 
and computationally efficient and uses all available information 
to explain the decision, which is an advantage in the clinical 
environment [60].

Preliminary research applying ANNs and using abundant samples 
collected from previous studies shows evidence for the good 
performance of this classifier [42]. Models using ANNs have already 
demonstrated their effectiveness in other fields of Medicine [59,70].
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Dentistry 
field

Application Data set Machine 
learning 
algorithms

Performance

Orthodontics AI system for automatic location of cephalometric 
landmarks
Leonardi et al. [16] (2010)

40 lateral cephalometric 
radiographs, from subjects; 
age range 9 -15 years; mean 
age13.9 years

Cellular NNa Differences between the two methods P<0.05

Predict the need for extractions in orthodontic 
treatment with the use of an expert system in 
patients between 11 and 15 years of age 
Xie et al. [17] (2010)

200 patients; age range 11-15 
years

ANNsb Accuracy: 80%

Diagnosis of dental deformities in cephalometry 
images through extraction of landmarks for 
craniofacial features on cephalometric radiography 
Banumathi et al. [53] (2011)

100 lateral cephalometric 
images

Gini SVMc, naïve 
Bayes

Accuracy: proposed Gini SVM, 98%; existing 
Gini SVM, 92%; naïve Bayes, 67%

Predict the sizes of unerupted canines and 
premolars during the mixed dentition period 
Moghimi et al. [18] (2012)

106 untreated subjects (52 
girls, 54 boys); age range 
13-15 years

Hybrid GA - 
ANNsd

ICCe: 0.697, mandible; 0.742, maxilla

Develop an expert system to improve the 
diagnosis and the decision to extract teeth for 
orthodontic treatment 
Jung and Kim [19] (2016)

Lateral cephalograms of 156 
patients

ANNs ICC: 0.97 to 0.99; success rates: diagnosis of 
extraction/ nonextraction, 93% ; diagnosis of 
the extraction patterns in total, 84%

Assessing orthodontic treatment need and 
outcome from the lay perspective 
Wang et al. [20] (2016)

Visual scan paths of 88 
laypersons

SVMf Accuracy: treatment need, 97.2%; treatment 
outcome, 93.4%

Automatic teeth detection and numbering
Chen et al. [54] (2019)

1250 periapical radiographs CNNsg Precisions and recalls exceed 90%; IoUh,, 91%

Decide stages of growth and development of use 
in Orthodontics by means of measurements of the 
vertebrae 
Kök et al. [55] (2019)

Cephalometric radiographs, 
from 300 individuals; age 
range 8-17years

k-NNi, naïve 
Bayes, DTj, 
ANNs, SVM, 
Random forest

Accuracy: k-NN, CVSk 5 (60.9%), CVS 6 
(78.7%); naïve Bayes, CVS 1 (992.1); DT, 
CVS 1 (97.1%), CVS 2 (90.5%); ANNs, CVS 
1 (93%), CVS 2 (89.7%), CVS 6 (78%), CVS 
3 (68.8%), CVS 4 (55.6%), CVS 5 (47.4%); 
SVM, CVS 3 (73.2%), CVS 4 (58.5%); 
Random forest, CVS 5 (36.8%) 

Describe the impact of orthognathic treatment on 
facial attractiveness and age appearance 
Patcas et al. [21] (2019)

2164 pre and post treatment 
photographs of 146 
orthognathic patients

CNNs Similarly and beneficial effect on 
attractiveness in 74.7% (MDl: 1.22 (95% CIm: 
0.81;1.63); P<0.001)

Assessment of facial attractiveness of patients 
who have undergone treatment for clefts using an 
automated system 
Patcas et al. [61] (2019)

Frontal and profile images 
of 20 treated left-sided cleft 
patients (10 males; mean age: 
20.5 years) and 10 controls (5 
males; mean age: 22.1 years)

CNNs Mean score: 4.75 ±1.27; all P≥0.19

Automatic analysis of panoramic radiographs for 
teeth detection and numbering 
Tuzoff et al. [56] (2019)

1352 panoramic radiographs 
of adults

CNNs Teeth detection: Sen, 0.994; precision, 0.994
Teeth numbering: Se, 0.980; Sp0, 0.999

Evaluation of the variation of the maxillary 
structure in unilateral canine impaction
Chen et al. [52] (2020)

107 CBCTp images Random forest ICC: 0.994 (auto-segmentation); 0.999 (auto-
landmark)

Orthodontic diagnosis using an automated 
cephalometric X-ray analysis
Kunz et al. [22] (2020)

1792 cephalometric 
radiographs

CNNs ICC: > 0.864, p< 0.001

Automated measurement of mandibular molar 
angulations on panoramic to predict the potential 
for eruption of third molars
Vranckx et al. [50] (2020)

838 panoramic radiographs CNNs mean IoU: 90%; accuracy: 79.7% (–2.5°; 2.5°) 
and 98.1% (–5°; 5°)

Table 1. Main features of surveyed studies using machine learning algorithms in orthodontics

(Contd...)
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Dentistry 
field

Application Data set Machine 
learning 
algorithms

Performance

Classification of impacted maxillary 
supernumerary teeth
Kuwada et al. [57] (2020)

550 panoramic radiographs 
(275 patients with at least 
1 impacted maxillary 
supernumerary teeth (ISTs) 
and 275 patients without ISTs 
in the maxillary incisor region

CNNs AUCq (Model C, DetectNet): 0.93 (testing 
data 1); 0.96 (testing data 2)

aCellular NN: Cellular neural networks; bANNs: Artificial neural networks; cGini SVM: Gini support vector machine; dHybrid GA-ANN: Hybrid genetic algorithm and artificial neural network; 
eICC: Intraclass correlation coefficient; fSVM: Support vector machine; gCNNs: Convolutional neural networks; hIoU: Intersection-over-union; ik-NN: k-nearest neighbors; jDT: Decision tree; 
kCVS: Cervical vertebrae stages; lMD: Mean absolute difference; mCI: Confidence interval; Sen: Sensibility; Spo: Specificity; pCBCT: Cone beam computed tomography, qAUC: Area under 
receiver operating.

Table 1. (Continued)

Table 2. Main features of surveyed studies using machine learning algorithms in periodontics
Dentistry 
field

Application Data set Machine learning 
algorithms

Performance

Periodontics Diagnosis and classification of 
periodontitis based on the molecular 
profile
Kebschull et al. [63] (2013)

Gene expression profiles of the 
entire genome from 310 biopsies 
of “healthy” or “sick” gingival 
tissue

SVMa AUCb: 0.63-0.99

Diagnosis of aggressive periodontitis 
and chronic periodontitis trained by 
immunologic parameters 
Papantonopoulos et al. [42] (2014)

4 distinct samples of patient with 
periodontitis advanced obtained 
from previous studies

ANNsc Accuracy: 90-98% 

Diagnosis of periodontal diseases 
(preliminary study)
Ozden et al. [64] (2015)

150 patients SVM, DTd, and ANNs Accuracy: SVM, 98%; DT, 98%; ANNs, 46%

Classification of generalized chronic 
periodontitis, generalized aggressive 
periodontitis and periodontal health 
from bacterial profiles 
Feres et al. [65] (2018)

3915 subgingival biofilm samples 
from 435 patients SVM

SVM See: 86%, Spf:79%, AUC: 0.83

Detection and classification of 
the periodontal bone loss of each 
individual tooth
Chang et al. [66] (2020)

340 panoramic radiographs CNNsg ICCh: 0.91; P<0.01

Periodontitis risk assessment 
Shimpi et al. [67] (2020)

11048 patients (4766 positive 
cases and 6282 controls) 

Naïve Bayes, Logistic 
Regression, SVM, 
ANNs, and DT

Accuracy: Naïve Bayes, 0.801 (0.791-0.811); 
Logistic Regression, 0.768 (0.778-0.795); SVM, 
0.790 (0.780-0.799); ANNs, 0.841 (0.833-0.849); 
DT, 0.901 (0.892-0.908)

aSVM: Support vector machine; bAUC: Area under receiver operating; cANNs: Artificial neural networks; dDT: Decision tree; See: Sensibility; Spf: Specificity; gCNN: Convolutional neural 
networks; hICC: Intraclass correlation coefficient.

3.3. Applications in oral medicine and maxillofacial surgery 
(Table 3)

In the last decade, the applications of ML-based diagnosis 
have been expanded to the segmentation and identification of 
maxillofacial cysts and other radiolucent lesions, as well as the 
diagnosis of other common oral diseases of growing interest in the 
oral medicine and maxillofacial surgery domain [23,24,43,44,71]. 
The gold standard for the final diagnosis of these lesions is a 
specific histopathological examination, which tends to be more 
invasive and entails greater cost and resources. Therefore, the 
advancement of new methodologies that lead to more simplified 

and precise diagnostic procedures requires special attention. 
Several studies have successfully applied the CNNs algorithm 
for this purpose [23,44,71]. One of the studies reported that the 
best performance was achieved by using SVM (96% accuracy) 
to classify dental periapical cysts and keratocysts in a set of 3D 
cone beam computed tomography (CBCT) images [43]. The 
study also explored other classifiers such as ANNs, k-nearest 
neighbors (k-NN), naïve Bayes, decision trees, and random 
forest. The application of the k-NN classifier is based on the 
principle that nearby data points have similar properties. Reports 
show that k-NN is very sensitive to irrelevant characteristics, 
which can make learning inefficient and affect the interpretation 

https://pubmed.ncbi.nlm.nih.gov/?term=Kuwada+C&cauthor_id=32507560
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Table 3. Main features of surveyed studies using machine learning algorithms in oral medicine and maxillofacial surgery
Dentistry field Application Data set Machine learning 

algorithms
Performance

Oral 
medicine and 
maxillofacial 
surgery

Diagnosis and classification of dental periapical 
cyst lesions and keratocystic odontogenic tumor 
through decision support system
Yilmaz et al. [43] (2017)

50 CBCTa 3D images obtained from 
50 patients

k-NNb, Naive 
Bayes, DTc, 
Random forest , 
ANNsd, and SVMe

Best accuracy (SVM) : 96.0% 

Diagnosis and classification of radiolucent lesions 
in the mandible on panoramic radiographs
Ariji et al.[23] (2019)

210 panoramic radiographs images 
with mandibular radiolucent lesions

CNNsf Seg: 0.88

Diagnosis for cases of orthognathic surgery
Choi et al. [79] (2019)

316 cases ANNs Success rate (surgery/non-surgery 
diagnosis): 96%
ICCh: 0.97- 0.99

Develop an intelligent automated system to 
support specialists for differential diagnosis in oral 
medicine
Ehtesham et al. [24] (2019)

500 cases of six principal axes of 
oral diseases

CBRi Success rate: 76.9 %

Predict perioperative blood loss prior to 
orthognathic surgery
Stehrer et al. [78] (2019)

950 patients Random forest MDj:7.4 ml, SDk: 172.3 ml, p < 
0.001

Automatic classification of dental artifact status 
for efficient image veracity checks
Welch et al. [51] (2019)

1538 head and neck planning 
CBCT images

CNNs AUCl: 0.91±0.01

Detection and segmentation of the mental foramen
Kats et al. [74] (2020)

112 digital panoramic radiographs CNNs Precision: 71.13%, recall:68.24%

Diagnosis of odontogenic cysts and tumors of both 
jaws on panoramic radiographs
Kwon et al. [71] (2020)

1282 panoramic radiographs (350 
dentigerous cysts, 302 periapical 
cysts, 300 odontogenic keratocysts, 
230 ameloblastomas, and 100 
normal jaws with no disease

CNNs Se: 88.9%, Spm: 97.2%, accuracy: 
95.6%, and AUC: 0.94, (augmented 
data set)

Diagnosis of odontogenic cystic lesions
Lee et al. [44] (2020)

2126 images, including 1140 
(53.6%) panoramic and 986 
(46.4%) CBCT images

CNNs AUC: 0.914, Se: 96.1%, Sp:77.1%

Develop a method for automated dental 
segmentation of panoramic dental images for 
diagnostic purposes
Lee et al. [75] (2020)

846 images with tooth annotations 
from panoramic radiographs

CNNs F1-score: 0.875, precision: 0.858, 
recall: 0.893, IoUn:0.877

Classification of head and neck computed 
tomography images to detect the presence of 
dental artifacts that affect the visualization of 
structures 
Welch et al. [76] (2020)

1538 computed tomography images CNNs AUC: 0.92±0.03

Classification of maxillary sinus lesions compared 
to healthy maxillary sinuses
Kuwana et al. [77] (2021)

 Imaging data for healthy maxillary 
sinuses (587 sinuses), inflamed 
maxillary sinuses (416 sinuses), 
cysts of maxillary sinus regions 
(171 sinuses)

Accuracy, Se and Sp: , 90-91%, 
88-85%, and 91-96% (diagnosis 
maxillary sinusitis); 97-100%, 
80-100%, and 100% (cysts of the 
maxillary sinus regions)

aCBCT: Cone beam computed tomography; bk-NN: k-nearest neighbors; cDT: Decision tree; dANNs: Artificial neural networks; eSVM: Support vector machine; fCNN: Convolutional neural 
networks; gSe: Sensibility; hICC: Intraclass correlation; iCBR: Case‐based reasonig; jMD: Mean absolute difference; kSD: Standard deviation; lAUC: Area under receiver operating curve; mSp: 
Specificity; nIoU: Intersection-over-union.

of the final model. However, the transparency of this classifier 
makes it useful, as it reflects the intuition of human users. This 
characteristic is common to naïve Bayes classifiers as well [72]. In 
general, the selection of these algorithms for specific objectives is 
a difficult task. Further, the evaluation of their performances may 
be different according to the characteristics and pre-processing of 
the datasets [60,72].

Other studies have reported the application of selection case-
based reasoning (CBR) in the analysis [24]. CBR provides 

feedback through the collection of the previous cases and learns 
from these. Thus, new rules can be defined even with the addition 
of new cases. Many conditions of the oral cavity show similar 
clinical signs and symptoms, which can often hinder the diagnosis 
[24,73]. This affects the reliability of the diagnosis and the 
subsequent treatment scheme to be followed by the patient. The 
CBR technology has been valuable in developing a meticulous 
and systematic approach for the unique identification of these 
diseases, seeking a more exact characterization of analogies 
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Table 4. Main features of surveyed studies using machine learning algorithms in forensic dentistry
Dentistry 
field

Application Data set Machine learning 
algorithms

Performance

Forensic 
dentistry

Classification of tooth types on dental CBCTa images 
for forensic identification purposes
Miki et al. [80] (2017)

52 CBCT image CNNsb Accuracy (augmented training 
data): 88.8%

Use of automated learning techniques for predicting 
mandibular morphology in skeletal class I, II and III
Niño-Sandoval et al. [84] (2017)

229 lateral cephalograms (95 
women and 134 men); age 
range 18-25 years 

ANNsc, SVRd ICCe,: ANNs, 0.84 - 0.99; SVR, 
two coefficients above 0.7

Age estimation in children and adolescents for forensic 
purposes
Štepanovský et al. [81] (2017)

976 orthopantomographs 
(662 males, 314 females) of 
children and adolescents; age 
range 2.7-20.5 years

SVMf, ANNs, k-NNg, 
K-Star, Regression tree, 
M5P Tree, Random forest

 MAEh: M5P tree, SVM: under 0.7 
years for both males and females 

Develop an automated method for dental age estimation 
based on lower third molars stage on panoramic 
radiographs (pilot study)
De Tobel et al. [82] (2019)

400 panoramic radiographs CNNs Mean accuracy: 0.51, MDi: 0.6 
stages, kappa: 0.82

Automatic human identification from panoramic dental 
radiographs
Fan et al. [83] (2020)

15369 panoramic dental 
radiographs from 6300 
individuals

CNNs  Accuracy: 85.16% and 97.74% 

Automated estimation of tooth age from lower left 
third molar development stages assessed on panoramic 
radiographs
Merdietio et al. [48] (2020)

400 panoramic radiographs CNNs Accuracy: 0.61, MD: 0.53 stages, 
kappa: 0.84

aCBCT: Cone beam computed tomography; bCNNs: Convolutional neural networks; cANNs: Artificial neural networks; dSVR: Support vector regression; eICC: Intraclass correlation coefficient; 
fSVM: Support vector machine; gk-NN: k-nearest neighbors; hMAE: Mean absolute error; iMD: Mean absolute difference.

and features that distinguish them. The results, though incipient, 
highlight the capability of the algorithms in improving the quality 
and efficiency of patient care through accurate diagnosis.

These techniques have also been applied in the classification of 
maxillary sinus lesions, detection, and segmentation of structures, 
as well as classification of the state of dental artifacts for efficient 
image veracity checks [51,74-77].

The success of ML algorithms in predicting perioperative 
blood loss before orthognathic surgery has also been recently 
investigated [78]. The use of a random forest classifier could 
anticipate possible complications during the surgical procedures 
and calculate the likely perioperative blood loss before performing 
the surgery. This prediction could be useful in decision-making 
by professionals and patients in elective procedures and facilitate 
better management of surgical procedures. In a recent study, 
ANNs were used to determine the diagnosis of orthognathic 
surgery cases, showing a model success rate of 96% for diagnostic 
decisions [79].

3.2.1. Applications in forensic dentistry (Table 4)

Forensic dentistry and anthropological examinations have also 
been impacted by the advances of these modern tools. One of the 
studies that aimed to classify tooth types based on dental CBCT 
images applied CNNs algorithms with an accuracy of 88.8% [80]. 
Several studies have focused on the application of automated 
methods in the estimation of age using teeth, an important aspect 
of forensic dentistry [48,81-83]. Manual methods that estimate 
age based on the stage of tooth development are painstaking 
and complex. An interesting study focused on the evaluation of 
skeletal patterns using automated algorithms [84]. Automated 

systems that contribute to improving the quality and speed of ML-
based age estimation are very useful and warrant more attention 
devoted to their further development and validation [82].

3.2.2. Applications in endodontics (Table 5)

Recent studies employing these techniques in endodontics have 
indicated several performance advantages. However, some of 
these studies constitute pre-clinical studies and the generalization 
of their results has been limited. Among the applications in this 
area, locating the minor apical foramen using feature extraction 
procedures from radiographs is distinguished [85,86]. These ex 
vivo studies applied ANNs and revealed promising results that 
should be further explored. The exact estimation of the working 
length is an important initial step to a successful root canal 
treatment. The introduction of improvements in locating the 
area of greatest constriction (minor apical foramen) in the root 
canal constitutes a key element of renewed interest for clinical 
endodontists.

Another study aimed at evaluating the performance of ANNs 
in the diagnosis of vertical root fracture using a moderate sample 
of extracted teeth [87]. Although the results were successful, a 
larger number of teeth and other dental groups should be included 
in the analysis to arrive at more reliable conclusions. The previous 
studies that collected in vivo data were also reviewed [49,88,89]. 
These studies used CNNs algorithms to aid in the diagnosis of 
the number of roots of the mandibular first molars [88], to detect 
vertical root fractures on panoramic radiographs [89], and to 
improve the diagnosis of periapical pathosis on CBCT images [49]. 
One of the studies [88] found that deep learning systems using 
CNNs to process inexpensive radiographic images showed high 
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Table 5. Main features of surveyed studies using machine learning algorithms in endodontics and cariology
Dentistry 
field

Application Data set Machine 
learning 
algorithms

Performance

Endodontics Localization of the lesser apical foramen 
using X-ray feature extraction procedures and 
then processing data using an artificial neural 
network as a decision-making system
Saghiri et al. [85] (2012)

50 single-rooted mandibular 
incisors and second premolars 
with curvatures <30° in the apical 
region, extracted for orthodontic 
or periodontal reasons

ANNsa Success rate: 93%

Location of the minor apical foramen 
using feature extraction procedures from 
radiographs (a cadaver study)
Saghiri et al. [86] (2012)

50 single-rooted teeth from 19 
male cadavers; age range 49-73 
years

ANNs Success rate: 96%, CIb: 90.57–101.43; P<0.001

Diagnosis of vertical root fracture (an ex vivo 
study)
Kositbowornchai et al. [87] (2013)

200 digital radiographic images 
of extracted human premolar teeth 
with single root (50 sound and 150 
vertical root fractures)

ANNs Sec: 98%, Spd: 90.5%, accuracy: 95.7%

Diagnosis of the number of the distal roots of 
mandibular first molars
Hiraiwa et al. [88] (2019)

Panoramic radiographs of 760 
mandibular first molars from 400 
patients

CNNse Accuracy:86.9%

Detection of vertical root fracture on 
panoramic radiograph using neural network 
system
Fukuda et al. [89] (2019)

300 panoramic images containing 
a total of 330 teeth with clearly 
visible fracture lines

CNNs Recall: 0.75, precision: 0.93, F-measure: 0.83

Diagnosis of periapical pathosis on CBCTf 
images
Orhan et al. [49] (2020)

Images of 153 periapical lesions 
obtained from 109 patients

CNNs Recall: 0.89, precision:0.95, F-measure: 0.93

Cariology Approximal caries diagnosis using a 
computer-assisted diagnostic system
Araki et al. [26] (2010)

100 approximate surfaces of 50 
human teeth extracted (first and 
second maxillary premolars)

ANNs AUCg:: Inner half enamel caries, 0.691±0.048; 
dentine caries, 0.745±0.088; all caries, 
0.662±0.061

Diagnosis of dental caries on periapical 
radiographs
Lee et al. [27] (2018)

3000 periapical radiographic 
images

CNNs Premolar and molar model-Se: 81.0 % (74.5-
86.1), Sp: 83.0 % (76.5-88.1), accuracy: 82.0% 
(75.5-87.1), PPVh: 82.7% (76.1-87.9), NPVi: 
81.4 (75.0-86.4), AUC: 0.845 (95% CI 0.790-
0.901)

Develop models for identification of root 
caries risk
Hung et al. [28] (2019)

5135 individuals; mean age 
(±SDj): 46,6 ± 18,1 years

SVMk, 
XGBoostl, 
Random forest, 
k‐NNm, LRn

Se, Sp, accuracy, precision, AUC: SVM: 
0.996, 0.943, 0.97, 0.951, 0.997; XGBoost: 
1.000, 0.889, 0.947, 0.908, 0.987; Random 
forest:1.000, 0.875, 0.941, 0.947, 0.999; k‐
NN: 0.971, 0.679, 0.832, 0.769, 0.881; LR: 
0.771, 0.711, 0.742, 0.742, 0.818

Detection of caries lesions on bitewing 
radiographs images
Cantu et al. [29] (2020)

3686 bitewing radiographs CNNs Se:0.75, Sp: 0.83, accuracy: 0.80, PPV: 0.70, 
NPV: 0.86, F-measure: 0.73

Diagnosis of dental caries on digital periapical 
radiographs
Geetha et al. [30] (2020)

105 images derived from intra-oral 
digital radiography

BPNNo Accuracy: 0.971, AUC: 0.987

Caries risk prediction in geriatric people
Liu et al. [31] (2020)

1144 geriatrics; range age 65-74 
years 

GRNNp Se: 91.41% (training set), 85.16% (test set); Sp: 
72.38% (training set), 70.27% (test set); AUC: 
0.777

Detect caries lesions in near-infrared-light 
transillumination images
Schwendicke et al. [32] (2020)

226 extracted posterior permanent 
human teeth (113 premolars, 113 
molars)

CNNs AUC: 0.74 (0.66-0.82), Se: 0.59 (0.47-0.70), 
Sp: 0.76 (0.68-0.84), PPV: 0.63 (0.51-0.74), 
NPV: 0.73 (0.65-0.80)

Evaluation of cost effectiveness in detection 
of proximal caries on bitewing radiographs 
using AI
Schwendicke et al. [90] (2020)

3686 bitewing radiographs CNNs Accuracy: 0.80; P<0.05, ICERq: –13.9 euro/
year

aANN: Artificial neural networks; bCI: Confidence interval; cSe: Sensibility; dSp: Specificity; eCNN: Convolutional neural networks; fCBCT: Cone beam computed tomography; gAUC: Area 
under receiver operating; hPPV: Positive predictive value; iNPV: Negative predictive value; jSD: Standard deviation; kSVM: Support vector machine; lXGBoost: Extreme gradient boosting; 
mk-NN: k-nearest neighbors; nLR: Logistic regression; oBPNN: Back propagation neural networks; pGRNN: General regression neural network; qICER: Incremental cost-effectiveness ratio.

https://en.wikipedia.org/wiki/Positive_predictive_value
https://en.wikipedia.org/wiki/Positive_predictive_value
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accuracy (86.9%) in the differential diagnosis of a single or extra 
root in the distal roots of the mandibular first molars.

3.2.3. Applications in cardiology (Table 5)

Findings from previous studies already reflect possible 
applications, both for the development of diagnostic systems 
for caries lesions through images and for the estimation of the 
prognosis of the disease [26-32,90]. Furthermore, dental caries 
continues to be a major oral health problem for many groups of 
the population [91-93]. In this context, new alternatives and tools 
that guarantee improvements in current methods of diagnosis and 
prognosis will be well-received among practicing dentists and 
patients.

One particular study [28] aimed to develop models for the 
prediction of root caries in adults and reported an excellent 
performance from a large database. Among the algorithms used, 
the SVM-based method demonstrated the best performance for the 
identification of root caries, with an accuracy of 97.1%, precision 
of 95.1%, sensitivity of 99.6%, and specificity of 94.3%. However, 
the study reported some problems concerning the use of cross-
sectional data, which could affect the predictive value of the model. 
Generalization and validation strategies using longitudinal data 
should be further explored. Another study, which stands out for the 
quality of its design, focused on the prediction of caries in geriatric 
patients using general regression neural networks (GRNN), and 
showed promising results, with a sensitivity of 91.41% on the 
training set and 85.16% on the test set [31]. GRNN represents 
an improved neural network technique based on nonparametric 
regression. These algorithms can be very useful for making 
predictions and comparisons of system performance in practice 
due to their ability to converge upon the underlying function of the 
data with only a few training samples. The additional knowledge 
required to obtain the adjustment successfully is relatively small 
and can be achieved without additional input from the user, which 
is highly advantageous [31,37].

A novel study evaluated, for the 1st time, the cost-effectiveness 
of these technologies, which is a vital consideration for their 
application in the clinical environment [90]. The study reported 
encouraging results for the use of automated methods in the 
diagnosis of caries.

3.3. Applications in prosthetics, conservative dentistry, and 
implantology (Table 6)

Other subfields of dentistry such as prosthetics, conservative 
dentistry, and implantology have also benefited from the 
implementation of ML techniques. The use of ANN-based 
systems that support the prognosis of facial deformation after 
a complete prosthesis has been promoted in these fields. The 
experimental results showed that this method can predict the 
deformation of facial soft tissues quickly and accurately, which 
is valuable in making decisions to establish concrete treatment 
actions [94]. Other studies have focused on the classification of 
specific features of teeth using ANNs [95], the potential of ANNs 
in improving tooth color through computer-assisted systems [96], 

and the automated detection and classification of various dental 
restorations in panoramic radiographs using SVM [97]. The study 
using SVM reported high accuracy (93.6%).

Other applications focused on using CNNs to predict the 
probability of shedding composite resin crowns fabricated with 
computer-aided design [98]. Another study used the Extreme 
Gradient Boost (XGBoost) algorithm to develop a clinical decision 
support model for the prediction of tooth extraction therapy related 
to the subsequent use of dentures [99]. The algorithm showed an 
accuracy of 96.2% and proved to be a powerful classifier and 
regressor, generally reaching optimal performance in structured 
data.

In the field of implantology, two studies demonstrated a good 
performance of CNNs in detecting implant systems [45,100]. 
The placement of dental implants as a branch of rehabilitation 
treatment has recently become common among patients who 
require more aesthetically and functionally sound dental 
prosthetic rehabilitation. At present, a considerable number of 
implant systems are placed with different fixation structures and 
characteristics, such that their identification based on routine 
radiographic images can be complicated for clinical dentists. 
Proper identification of these systems would reduce more invasive 
treatments in which the patient requires some type of repair or 
repositioning of the implant system. Another application in this 
area is focused on the prediction of patients’ mean peri-implant 
bone levels, which is very useful for estimating the survival of the 
implant and exploring plausible treatment alternatives that lead to 
the best outcomes [101]. This study used SVM for modeling and 
reported moderate performance.

4. Key Factors Influencing the Clinical Implementation 
of ML

The findings presented above point to a promising future of 
ML algorithms applied in dental practice. In this section, we will 
outline some key factors that should be considered to effectively 
guide the practical application of these methodologies.

4.1. Defining the clinical uncertainty

A clear definition of specific clinical uncertainty must be 
identified. The desired outcomes should be properly defined to 
guide the research. In addition, the objective should be adequately 
represented in terms of inputs and outputs, must correspond to 
plausible criteria, and consider the real clinical scenario in addition 
to results of other analyses. Reduction of heterogeneity between 
reports should be ensured with the use of clear and unambiguous 
guidelines. A previous study makes valuable suggestions in this 
regard [102].

4.2. Data management

Reproducing the findings of developmental studies in clinical 
practice poses certain challenges. Studies using ML attempt 
to generalize the links of input and output variables in the data 
set through the learning process. However, data sets are often 
confounded by noise. Therefore, the intrinsic characteristics of the 
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data (e.g. categorical data, numeric data, and time-series), origin, 
volume, outliers, missing data, etc., could affect the reliability 
of the models and lead to false interpretations while evaluating 
performance [39]. For example, variations in classification criteria 
of periodontal disease (target condition) were detected when 
retrospective data were analyzed. Further, one must be aware 
of what is called “data leakage” [8,39,40]. Data leakage occurs 
when a certain attribute accidentally encodes the result (e.g. when 
the need for a partial denture already indicates the diagnosis of 
edentulism). Initially, covariates with the same meaning must be 
eliminated. Criteria on biological plausibility should guide the 
selection of covariates. Strategies to reduce data dimensionality 
are fundamental in ensuring simplicity and effectiveness of the 
models. Thus, data pre-processing, cleaning, and normalization 

are essential steps in all analyses [39,103]. Automated techniques 
such as constructive induction, attribute interaction discovery, 
and non-linear modeling approaches through embedded, filters or 
wrappers methods have been used for data mining [104,105]. One 
of the reviewed studies that aimed to estimate predictors associated 
with peri-implantitis implemented some of these techniques in an 
attempt to reduce the dimensionality of the data [101].

Moreover, biases can be introduced when the data do not 
capture the epidemiological reality of events [40]. For example, 
a dental caries prediction model built on specific attributes of 
a population of adolescent dental students from high-income 
countries may not be generalizable to make diagnostic inferences 
of periodontal disease for all the population, without including 
women in the initial training. These predictions would introduce 

Table 6. Main features of surveyed studies using machine learning algorithms in prosthetics, conservative dentistry and implantology
Dentistry 
field

Application Data set Machine learning 
algorithms

Performance

Prosthetics, 
conservative 
dentistry and 
implantology

Prediction of facial deformation after complete 
denture prosthesis
Cheng et al. [94] (2015)

Preoperative and postoperative 
3D face scan of 48 patients 
ANNsa

ANNs Average error rate: 22.49%

Classification of specific characteristics of teeth 
based on 3D scan data
Raith et al. [95] (2017)

129 data sets, consisting of 69 
upper jaw virtual models and 60 
lower jaw virtual models

ANNs Success rate: 93.3% and 93.5%

Prediction of patient mean peri-implant bone level
Papantonopoulos et al. [101] (2017)

72 implant-treated patients with 
237 implants (mean 7.4±3.5 
years of function)

SVMb Sec: 55% , Spd: 91%, particle swarm 
optimization-SVM: Se: 62%, Sp: 85%

Improve the computer color matching system 
(CCM) to measure a tooth color quantitatively and 
offer a porcelain recipe with instructions
Wei et al. [96] (2018)

43 metal-ceramic specimen ANNs MDe: 1.89 ± 0.75; P<0.01

Predicting the debonding probability of 
a computer-aided design/computer-aided 
manufacturing composite resin crowns with 3D 
stereolithography models of a die scanned from 
patients
Yamaguchi et al. [98] (2019)

8640 images CNNsf Accuracy: 98.5%, precision: 97.0%, 
recall: 100%, F-measure: 0.985, AUCg: 
0.998

Automatic detection and classification of various 
dental restorations on panoramic radiographs
Abdalla-Aslan et al. [97] (2020)

738 dental restorations in 83 
anonymized panoramic images

SVM Overall accuracy: 93.6%

Construct a clinical decision support model 
to predict tooth extraction therapy in clinical 
situations by using electronic dental records
Cui et al. [99] (2020)

4135 unidentified electronic 
dental records from 3559 
patients

Regression tree 
algorithm, AdaBoosth, 
GBDTi, Light GBMj, 
and XGBoostk

Accuracy, AUCl: regression tree 
algorithm: 0.953, 0.919; AdaBoost: 
95;5, 0.970; GBDT: 0.957, 0.970; 
LightGBM: 0.957, 0.970; XGBoost: 
0.962,0.970

Identification of the brand and model of a dental 
implant from radiographs 
Hadj Saïd et al. [100] (2020)

1206 dental implant radiographic 
images 

CNNs Accuracy: 93.8% (95% CIm: 87.2-
99.4%), Se: 93.5% (95% CI: 
84.2-99.3%), Sp: 94.2% (95% CI: 
83.5-99.4%), PPVn: 92% (95% CI: 
83.9-97.2%), NPVo: 91.5% (95% CI: 
80.2-97.1%), AUC: 0.918 (95% CI: 
0.826-0.973) 

Identification and classification of dental 
implant systems, using panoramic and periapical 
radiographs (a pilot study)
Lee et al. [45] (2020)

5390 panoramic and 5380 
periapical radiographic images 
from 3 types of dental implant 
systems

CNNs AUC: 0.971, 95% CI: 0.963-0.978

aANN: Artificial neural networks; bSVM: Support vector machine; cSe: Sensibility; dSp: Specificity; eMD: Mean absolute difference; fCNN: Convolutional neural networks; gAUC: Area under 
receiver operating; hAdaBoost: Adaptive boosting; iGBDT: Gradient boosting decision tree; jLight GBM: Light gradient boosting machine; kXGBoost: Extreme gradient boosting; lAUC: Area 
under receiver operating curve; mCI: Confidence interval; nPPV: Positive predictive value; oNPV: Negative predictive value.

https://en.wikipedia.org/wiki/Positive_predictive_value
https://en.wikipedia.org/wiki/Positive_predictive_value
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certain disparities and false interpretations in the models. In this 
context, it is essential to collect representative samples based on 
idealized hypotheses. The use of traditional power calculation 
methods, considering the size of important clinical differences, 
similarity, non-inferiority, or superiority of the models using ML in 
contrast with the gold standard, may allow for later extrapolation 
of the results [106]. A previous study focused on the prediction of 
dental caries better illustrates this analysis [31].

Emphasis should be placed on the availability of data from 
real examples for subsequent application of the model in clinical 
practice [39,106]. Public access repositories that record specific 
medical and dental data could be very useful for achieving 
this goal [40]. One of the previous studies made use of public-
use data from the National Health and Nutrition Examination 
Survey and reported good performance of ML classifiers in 
predicting root caries in this dataset [28]. Repositories with 
specific dental information are scarce. In this sense, efforts to 
create interoperable data sources should be expanded to provide 
support for the implementation of these methodologies [39]. 
This will, in turn, help in the evaluation of their performance by 
achieving more transparency and reproducibility in reporting. We 
should note the variability related to differences in annotations 
and particular characteristics of the data sources (medical records, 
X-rays, photographs, laboratory tests, and models) between 
various repositories [39]. Therefore, we consider it essential to 
apply standards to AI-based technologies, creating a common 
nomenclature that facilitates the implementation of consistent 
methods of data storage and retrieval across public platforms. 
Moreover, dental records and medical reports should be preserved 
and submitted to expert committees to integrate into these 
repositories [107,108].

4.3. Training, validation, and test sets

Given the lack of certainty regarding the algorithm to 
obtain the best classifier, it is useful to have non-overlapping, 
random datasets for training, validation, and/or testing. Thus, 
comparisons between different algorithms can be made on 
the training set, the model can be tuned and optimized on the 
validation set, and the performance of the model can be evaluated 
on the test set [108]. This process reduces the possibility of 
over fitting the model conditioned by the memorization of the 
characteristics of the training data, which can cause the model 
to fail when used in an independent sample. Similarities in the 
success rates of the training set, validation set, and test set imply 
the best generalization of the model. A study that used neural 
networks in the diagnosis of teeth extractions followed by the 
above approach for evaluating the capacity of expert systems 
with ML showed adequate performance for the different sets. 
Thus, the system could be tested more extensively to support 
decision-making during dental practice [19]. Other approaches to 
guide validation, such as resampling methods (e.g. bootstrapping 
and cross-validation), have been heavily recommended in 
clinical prediction model guidelines, when is not possible to 
obtain a separate set [4,109,110]. However, the results should be 

interpreted with caution as only the best results were reported 
while comparing several algorithms using this procedure.

As the number of examples influences the learning process in 
ML, some strategies are expected to contribute to the improvement 
of training. Augmentation can be used when the image dataset is 
collected. This technique allows us to artificially expand the size of a 
dataset by creating modified versions of images, improving the ability 
of fit models to generalize what they have learned to new images. The 
use of transfer learning can also provide training opportunities and 
help improve model performance. Several previous dental studies 
have implemented these approaches [27,29,56,88]. Over-sampling 
and repeat-sampling techniques can also be applied to reduce biases 
and improve model performance [106,110].

4.4. External validation

Even when internal validation is applied reserving a separate 
set of the same sample for testing, training data would be too 
personalized and the performance of the classifiers could be 
overestimated. Therefore, to extrapolate the results and ensure 
certainty in the clinical performance of the models, verification 
through an independent set (external validation) is crucial. 
External validation should be done in cohort studies, ideally with 
data acquired independently by means of geographic (e.g. dataset 
collected from a department of pediatric dentistry in another 
district) or temporal (e.g. dataset collected from other pediatric 
patients in the same department after 6 months) splits. Open 
access data sets, if available, could also be obtained [39,106].

4.5. Unbalanced classes

One of the recurring problems encountered during medical 
diagnosis is facing unbalanced classes where there is a 
disproportionate number of observations in each class (e.g. caries 
present or caries absent; oral cancer or not oral cancer). In this 
scenario, the classifiers exhibit poor precision in the minority 
class, as standard algorithms are designed to maximize accuracy 
and reduce error rates. They ignore the difference between types 
of misclassification errors, which can prove costly in medical or 
dental practice [111]. For example, classification in the diagnosis 
of oral cancer may favor false negatives (individuals with cancer 
but classified as negative). Consequently, these patients would not 
receive medical care. In this scenario, the accuracy metric may 
show a high value but bring a misleading understanding of the 
actual performance of the model. Solutions for this problem have 
been suggested both at the data level and at the algorithmic level. 
Solutions at the data level include different ways of resampling 
such as random oversampling with replacement, random under 
sampling, directed oversampling (where the choice of samples to 
replace is reported, rather than random), directed under sampling 
(where the choice of examples to be eliminated is reported), 
oversampling with informed generation of new samples, or 
combinations of the above techniques. Solutions at the algorithmic 
level include adjusting costs of the various classes to counteract 
the class imbalance; for example, decision trees can be used to 
adjust the probabilistic estimate on the tree leaf [111,112].
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4.6. Reference standard (ground truth)

In the field of data mining, the definition of the standard 
reference is important for labeling the data and evaluating the 
performance of the classifier. Arriving at an optimal definition 
can be challenging. The clinical reference standard is understood 
as the best available method to establish the presence or absence 
of the target condition. However, the gold standard would be an 
error-free reference standard [113]. Consequently, we can deduce 
that these reference standards are often not perfect. A concrete 
example is the routine visual and tactile examination used by 
the clinician for the diagnosis of dental caries, which can lead 
to errors. In this context, sensitivity or specificity values may 
be overestimated or underestimated. Evaluating the correlation 
between the performance of the classifier and the standard 
reference is necessary, and the use of external data may generate 
new adjustments. Assuming a composite reference standard that 
combines the results of multiple imperfect tests may be another 
alternative. Routinely used clinical data may add additional value 
to the analyses [114]. For example, when evaluating the presence 
of periodontitis, clinical observations, such as profiling of the 
pocket on probing, signs and symptoms of the periodontium, 
and bleeding, should be considered in addition to considering the 
bone level using radiographic criteria. This will provide a more 
robust standard and reduce possible misinterpretation. Panel or 
consensus diagnosis including a sufficiently large sample of 
experts could generate greater credibility compared to the isolated 
judgment of an expert. The inclusion of less experienced clinicians 
should be limited, as it can lead to errors in the interpretation of 
the algorithms’ performance. In addition, the calibration process 
and methods to measure inter- and intra-variability should be 
considered [115].

4.7. Classifier selection

The selection of the appropriate classifier still constitutes a 
gap in the literature related to the topic. Most of the classifiers 
proposed in the studies reviewed by us showed good performance. 
In order to extend these studies to clinical dental practice, 
interpretable models are preferred. These models allow for a 
better explanation of the selected parameters and will be more 
useful in decision-making [110]. Therefore, if these classifiers 
show similar precision levels while comparing several models, 
the explainable ones should be prioritized. Accuracy results can 
be misleading, especially when using unbalanced classes. Metrics 
such as the confusion matrix and area under the receiver operating 
characteristic curve (AUC) can provide better insights into model 
performance in clinical practice [103,106,116]. Other metrics 
for evaluating models used for the detection or segmentation of 
objects in images have also been reported [102].

4.8. Deployment and clinical application

Some aspects should be carefully evaluated before extending 
the application of these technologies to clinical practice. As with 
their usefulness in decision-making, cost-effectiveness analysis, 
benefits in the quality of services, and acceptance of their 

introduction by patients and clinicians ought to be considered. 
However, studies on the practice usefulness of models using 
data mining in dentistry are rare [117]. A recent report that 
provides details in relation to the evaluation of cost-effectiveness 
in the detection of proximal caries supported the possibility of 
introducing these tools in clinical practice [90]. In general, it is 
necessary to check out-of-sample datasets to verify the usefulness 
of these technologies before their dissemination in dental practice. 
Well-designed observational studies should focus on evaluating 
the impacts of these tools over time, by comparing scenarios 
wherein these tools have been used with those wherein they have 
not been used. The literature reviewed by us lacks randomized 
clinical trials, which should also be encouraged to improve 
the body of evidence on the potential for data mining in dental 
practice [106,117]. Moreover, studies conducted across institutions 
may better reflect the capabilities of these technologies and give 
greater external validity to the results [39].

Another key point is that these analyses are often reserved 
for specialists in an area with no appropriate interface provided 
for the implementation of these resources by routine health 
professionals. The interdisciplinary scientific community should 
perpetuate innovative solutions to contribute to improvements in 
this area. In dentistry, our findings revealed the development of 
several automated systems that have shown good performances, 
especially when applied to image-based diagnosis. Exploratory 
studies with a focus on the aforementioned aspects will be able 
to guarantee the practical expansion of these technologies in the 
clinical setting.

Further, the community of health professionals should also offer 
formal acceptance of use in service after rigorous analysis of these 
technologies to guarantee the effectiveness of their application. 
These technologies will also be a source of data storage for future 
research and evaluation of the best evidence related to certain 
diagnosis or treatment schemes [8]. However, the utility of these 
systems will not replace the function of the clinician, who generally 
evaluates other aspects in relation to the clinical, psychological, 
and behavioral conditions of the patient. Rather, it will serve to 
facilitate certain decisions in the real environment. The financial 
aspects of the implementation of ML are usually another concern. 
As these techniques undergo improvements with their continued 
use in healthcare, greater financial contributions will be required 
for research and further development [107,116,118].

5. Final Considerations

The use of ML has recently been expanded to different clinical 
dental specialties. Algorithms such as CNNs and SVM have shown 
promise in boosting the future use of these resources in different 
aspects of dental clinical practice. They offer a vast arsenal of tools 
to support diagnosis and prognosis and to improve clinical decisions. 
The ethical aspects of accessing and handling large amounts of 
sensitive information deserve special attention. Meticulous data 
pre-processing is recommended to extract useful models. The use 
of longitudinal study designs and verification through clinical trials 
should be guided by the advances of these novel techniques. External 
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validation must also be extended to guarantee the use of efficient 
and generalizable models. In addition, the homogenization of the 
methodologies for the presentation of these studies in clinical practice 
should be systematically improved for a better understanding of such 
proposals. Future studies in the field of dentistry should be aimed at 
obtaining solid evidence on the performance of these models and 
promoting their introduction in general practice.
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