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ABSTRACT

Background: Aside from racial and socioeconomic disparities in computerized neurocognitive 
testing and symptomology, there is a scarcity of research representing more diverse populations on 
other widely used tests for concussion, including vestibular and visual assessment.
Aim: The aim of the study was to investigate if racial and socioeconomic differences exist on baseline 
vestibular/ocular motor screening (VOMS) and King-Devick (K-D) test performance in high school 
student-athletes.
Methods: A total of 670 participants (66.1% White, 33.9% Black) with a mean age of 15.43±1.2 years 
were administered a baseline VOMS, average Near Point of Convergence (NPC) distance, and K-D 
test. The exposure variables included race (White or Black) and socioeconomic status (SES), defined 
as free and reduced lunch status (FRL or No-FRL). FRL status was determined by each participant’s 
school SES. The outcome variables consisted of baseline VOMS item symptom provocation scores, 
average NPC distance, and K-D baseline time. A series of Mann–Whitney U tests were performed 
for K-D baseline time, NPC distance, and VOMS items with FRL status or race as a between-subject 
factor. Two multivariable linear regressions were run to assess the association of (1) K-D baseline 
times using FRL, race, sex, and corrected vision as variables in the model and (2) average NPC 
distance using FRL, race, sex, and corrected vision as variables in the model.
Results: When adjusting for multiple comparisons, FRL athletes had slower (worse) K-D times 
(P<0.001) than non-FRL athletes. Black athletes had significantly lower mean NPC distance compared 
to White athletes at baseline (P=0.02) and FRL status athletes reported a significantly greater (worse) 
mean symptom provocation following the visual motion sensitivity item on the VOMS (P=0.02); 
however, these findings were no longer significant following adjustments for multiple comparisons. 
No differences were noted for any remaining VOMS items. The first model explained 3.9% of the total 
variance of K-D baseline times, whereas the second model was not significant.
Conclusions: Racial and SES differences existed on average NPC distance and the K-D test at baseline. 
Possible explanations for group differences may be neurobiological, anatomical, and/or disparity in 
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1. Introduction

A concussion occurs following a direct or indirect 
traumatic force that is transmitted to the brain, which initiates 
pathophysiological processes (i.e., neurometabolic cascade) 
and results in transient brain dysfunction [1,2]. Patients may 
experience immediate or delayed onset of symptoms including 
headache, dizziness and fogginess, abnormal vestibular function, 
altered behavior, impaired cognition, sleep dysregulation, cardiac 
autonomic dysfunction, or visual dysfunction [3-5]. The diagnosis 
of a concussion is centered around a multifaceted assessment 
battery which includes symptoms, neurocognition, postural 
stability, and vision/vestibular assessments [1]. Concussion 
recovery may vary by age and prior history of concussion [6]; 
however, most adolescent concussions are believed to resolve in 
≤4 weeks [3]. Unfortunately, a multitude of sociodemographic 
factors may affect clinical concussion diagnosis, treatment, and 
outcomes, which may be overlooked by clinicians.

Socioeconomic status (SES) (also known as socioeconomic 
position, sociodemographic characteristics, or sociocultural factors) 
has historically influenced clinical outcomes, dating as far back as 
the Pellagra epidemic in the 1900s [7,8]. Specific to concussion 
management, researchers are still reporting disparities in healthcare 
a century later, which disproportionally affects low-income 
patients and certain racial groups. Cognitive test performance [9], 
access to athletic trainers in secondary schools [10,11], access to 
specialized concussion care [12], and prolonged hospitalization 
following traumatic brain injuries are areas of inequity that warrant 
attention and must be addressed [13]. School SES, measured as a 
Title I classification [14], is a poverty indicator and the receiving 
of federal subsidies; however, these funds may not be prioritized 
for student-athlete health and safety. Further, 54% percent of high 
schools in the United States (US) meet school-wide Title I status 
and 52% of high school students in the US are eligible for free 
and reduced-price lunch (FRL) [15]. This proportion highlights the 
number of children nationwide who likely represent a lower SES. 
Many youths of low SES or a racial/ethnic minority are medically 
uninsured or insured by Medicaid [16]. This may limit their ability 
to seek specialized care for concussions. In fact, racial and ethnic 
minority youth sport participants are less likely to be diagnosed 
with a concussion in the emergency department compared to 
White youth [17]. Considered collectively, socioeconomically 
disadvantaged patients and those of non-White racial groups may 
not be positioned to attain optimal clinical outcomes if they suffer 
a concussion. In addition, if socioeconomically disadvantaged 
patients do seek medical attention following a concussion, it is 
uncertain if clinical diagnostics are capable of quantifying the 
influence of SES status on test results.

During various cognitive tests, processing speed [9,18-21], 
memory [9,18,20-22], and reaction time [18,20] have all shown to 
be susceptible to performance differences among racial groups at 
baseline or post-injury. In addition, total symptom reporting was 
significantly higher in Black athletes versus White athletes [23] 
and Black children reported higher cognitive-related symptoms 
post-concussion than their White counterparts [24]. Similarly, 
low SES groups performed worse on processing speed, memory, 
and reaction time tests and reported higher symptom scores [25]. 
Aside from racial and socioeconomic disparities in computerized 
neurocognitive testing and symptomology, there is a paucity of 
research representing more diverse populations on other widely 
used tests for concussion, including those that are designed to 
assess vestibular and visual dysfunction.

Concussion tests gaining rapid traction and clinical utilization, 
such as the King-Devick (K-D) test [26] or vestibular/ocular 
motor screening (VOMS) [27], have been used to assist clinicians 
in the detection of vestibular-ocular impairment following a 
suspected concussion, yet little is known about racial and SES 
differences on the test performance of the K-D and VOMS. 
However, on standard vision tests, there have been differences 
reported in prevalence rates of abnormal findings across racial 
groups [28-30]. A higher percentage of Black (14.1%) and 
Hispanic (14.2%) children failed one or more vision screening 
tests when compared to White children (11.0%) [28]. Likewise, 
the National Health and Nutrition Examination Survey estimates 
suggested that visual impairment was 2-3 times less prevalent 
in participants who reported a poverty income ratio that was 
more than 2 times above the poverty level versus their lower-
income counterparts [31]. Further, increased odds of vestibular 
dysfunction were reported when comparing Black and Mexican 
American races/ethnicities to Whites [32]. Considering the 
VOMS and K-D both include vision performance metrics (e.g., 
Near Point of Convergence (NPC) in the VOMS and saccadic 
tracking in the K-D), the aforementioned clinical data would 
suggest that race and SES are worthy of considering when 
interpreting test data during a concussion evaluation. Therefore, 
the purpose of the current study was to investigate if racial and/or 
socioeconomic differences exist in performance on VOMS items, 
including average NPC distance and K-D test at baseline in high 
school student-athletes.

2. Methods

2.1. Design

This study utilized a cross-sectional design. The exposure 
variables were race (White or Black) and SES, defined as free and 
reduced lunch status (FRL or No-FRL). FRL status was determined 

nature. With a higher probability of undiagnosed and uncorrected vision impairment, vestibular dysfunction, and saccadic eye tracking deficits likely 
to be more apparent as a consequence of poverty or health inequities, it is important that healthcare providers, especially those that diagnose and treat 
concussions, understand that performance on the VOMS and K-D tests at baseline may be subject to sociodemographic factors of SES and race. 
Relevance for patients: To provide the most culturally competent care, clinicians should consider sociodemographic variables of race and SES as social 
determinants of health worthy of attention on objective and subjective measures of baseline concussion assessment.
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by each participant’s school SES: Title I or non-Title I. Title I school 
SES was defined as high poverty, which includes schools where 
a greater percentage of students in attendance qualify for FRL, 
and non-Title I school SES was defined as low poverty included 
schools of which a greater percentage of students in attendance 
did not qualify for FRL [14]. Title I status was confirmed with 
administrators at each school district. The outcome variables 
consisted of baseline VOMS item symptom provocation scores, 
average NPC distance, and K-D baseline time.

2.2. Participants

A total of 868 high school student-athlete participants from 10 
high schools in Northeast Ohio initially enrolled in the study. A total 
of 670 participants between the ages of 13 and 18 years (15.43±1.2 
years) met the study’s inclusionary criteria. Any student-athlete 
diagnosed with a self-reported learning disability, concussion within 
the past 3 months, or any athlete who was missing baseline data on 
one of the two outcome measures (n=99) was excluded from the 
study. In addition, individual’s whose self-reported race was not 
White or Black (e.g., Hispanic/Latino, Asian, American Indian, and 
Pacific Islander) were excluded from the analysis (n=99) due to a low 
comparative sample size of additional minority races and ethnicities. 
A breakdown of participant demographics is provided in Table 1.

2.3. Outcome measures

2.3.1. VOMS tool

The VOMS was used to screen each student-athlete on eight 
individual items, including (1) smooth pursuits, (2) horizontal 
saccades, (3) vertical saccades, (4) convergence, (5) near point 
convergence distance (NPC), (6) horizontal vestibular-ocular reflex, 
(7) vertical vestibular-ocular reflex, and (8) visual motion sensitivity 
(VMS). Before the assessment, student-athletes reported a baseline 
rating for headache, dizziness, fogginess, and nausea on a scale of 0 
(none)-10 (severe). After each item assessment, student-athletes rated 
each of the 4 symptoms again. Each VOMS item was administered 
to see if each subscale provoked any of the previously mentioned 
four symptoms. Symptom change scores were utilized for analyses 
and calculated by subtracting the pre-assessment symptom ratings 
from the post-assessment symptom ratings to reflect true symptom 
provocation of each item. NPC was collected using a tape measure 
and a Bernell fixation device. A total of three trials were collected by 
having each participant self-report diplopia or exophoria, measuring 
the distance with a tape measure, and then averaged. Normal NPC 
values are within 5 cm or less for children [33]. The averaged NPC 
values were utilized for analyses. High internal consistency has been 
previously reported for baseline NPC distance and K-D times in an 
adolescent student-athlete sample [34].

2.3.2. K-D test

The K-D test is a rapid, number-naming tool requiring 
microsaccadic eye movements and reaction time. The K-D test 
measures the time it takes to read a series of numbers on a series of 
three test cards as quickly as possible, without making any errors. 

Scoring is calculated as the cumulative time that it takes to read three 
test cards, which get increasingly more difficult with each card, error-
free. Each participant completed the K-D test twice, and the fastest of 
the two trials was then recorded as the participant’s baseline time. If 
a participant made an error on one of the 2 trials, he or she completed 
an additional trial(s) until an error-free attempt was completed. Each 
test was initiated with uniform directions as provided on the K-D test-
card booklet followed by completion of the 1 demonstration card. 
High internal consistency (Cronbach α=0.92) has been recorded for 
baseline K-D times in youth populations [35]. Within this study, it is 
noted that the spiral-bound test card Version 1 of the K-D was used.

2.4. Procedure

Institutional Review Board approval was granted prior to 
any data collection. Further, all participants provided parental 
written consent before the start of the study. Participants were 
recruited from 10 high schools in the Northeast Ohio region by 
the principal investigator and athletic trainers employed at each 
high school. During pre-season baseline testing, student-athletes 
were individually administered the VOMS and K-D tests in a 
quiet classroom at their respective school. Each student-athlete 
was tested individually with a trained research team member. Data 
were collected from July 2016 through December 2018.

2.5. Statistical analysis

Before analysis, the dependent variables were screened for 
normality (i.e., skewness >2, kurtosis >9, Shapiro–Wilk P<0.05, 

Table 1. Participant demographics.
FRL status (%)

No FRL 
(n=232)

FRL 
(n=438)

Total 
(n=670)

Race
White 202 (87.1) 241 (55.0) 443 (66.1)
Black 30 (12.9) 197 (45.0) 227 (33.9)

Sex
Female 59 (25.4) 87 (19.9) 146 (21.8)
Male 173 (74.6) 351 (80.1) 524 (78.2)

Prescribed glasses or contacts
Yes 113 (48.7) 187 (42.7) 300 (44.8)
No 119 (51.3) 250 (57.3) 369 (55.2)

Tested with corrective lens
Yes 69 (29.7) 98 (22.4) 167 (25.0)
No – Not prescribed 119 (51.3) 251 (57.3) 370 (55.2)
No – Did not adhere to prescription 44 (19.0) 89 (20.3) 133 (19.9)

Age
13 2 (0.9) 13 (3.0) 15 (2.2
14 48 (20.7) 129 (29.5) 177 (26.4)
15 54 (23.3) 95 (21.7) 149 (22.2)
16 70 (30.2) 109 (24.9) 179 (26.7)
17 52 (22.4) 83 (18.9) 135 (20.1)
18 6 (2.6) 9 (2.1) 15 (2.2)

Data reported as n (%). FRL: Free and reduced lunch status
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and Q-Q plot observation). The Shapiro–Wilk test results 
indicated that the VOMS symptom provocation scores, NPC 
distance, and K-D test times (P<0.01) did not follow a normal 
distribution. Thus, a series of Mann–Whitney U test were run 
to assess group differences between race (Black or White) and 
FRL status (FRL, no-FRL) for pre-test and symptom provocation 
(i.e., change scores) on individual VOMS items along with NPC 
distance and K-D baseline times. Before modeling, outliers (>3 
SDs) for K-D baseline time (n=9) and NPC distance (n=14) were 
removed. Two multivariable linear regressions were run to assess 
the association of (1) K-D baseline times using FRL, race, sex, and 
corrected vision as variables in the model and (2) average NPC 
distance using FRL, race, sex, and corrected vision as variables 
in the model. Due to autocorrelation (assessed through the Durbin 
Watson statistic), modeling was performed with general least 
squares and Nagelkerke’s pseudo R2 was reported [36]. Variable 
selection was informed by research noting that sex differences 
[37], and the use of corrective lenses, if prescribed, should be 
worn during the K-D test [38]. Finally, race may play a factor 
in the prescription and use of corrective lenses [39,40]; thus, it 
was important to examine the potential association between these 
factors for both analyses. An alpha level of 0.05 was set a priori 
and P-values were adjusted to control for multiple comparisons 
using the Benjamini–Hochberg procedure [41,42]. Variables 
with P-values significant after correction were indicated with 
an asterisk. All analyses were conducted in RStudio (RStudio, 
Boston, MA) with R version 4.0.2, using the nlme package.

3. Results

3.1. Vestibular/ocular motor and K-D baseline time differences

A series of Mann–Whitney U test revealed small differences 
consistent with random sampling between race on pre-test 
symptoms of the VOMS (U=49571, P=0.41, Cohen’s d=0.01) 
or symptom provocation scores of any VOMS item (U=48867-
50252, P=0.06-0.97); however, results were not statistically 
significant (Table 2). Regarding FRL status, no differences were 
observed between the FRL and non-FRL groups on pre-assessment 
symptoms of the VOMS (U=50642, P=0.11, Cohen’s d=0.14). 

Further, no statistically significant differences were observed on 
the VMS VOMS item (U=49152.0, P=0.02, Cohen’s d=0.11), with 
the FRL group reporting greater (worse) symptom provocation 
(0.10±0.9) than non-FRL (0.06±0.6). However, this VMS finding 
was no longer significant following the Benjamini–Hochberg 
procedure. There were no other statistically significant differences 
between symptom provocation change scores of any VOMS item 
between FRL status (U=49411-50664, P=0.11-0.77). Average 
NPC distance differed between race (U=55446, P=.02, Cohen’s 
d=0.16) but did not differ between the FRL and non-FRL groups 
(U=48584.0, P=0.31, Cohen’s d=0.04) (Figure 1). Refer to Table 2 
for means and standard deviations. All medians and interquartile 
ranges were 0.00 for VOMS symptoms and NPC distance in the 
sample and between groups.

The results of the Mann–Whitney U tests indicated that there 
was a significant difference between K-D baseline time and FRL 
(U=42513, P<0.01, Cohen’s d=0.32), where those who received 
FRL (50.19±8.33s) had slower (worse) overall K-D times 
compared to those not receiving FRL (48.19±7.70). Regarding 
potential racial differences, results of the Mann–Whitney U test 
indicated that there was not a significant difference between 
K-D baseline time and race (U=51685, p=0.55, Cohen’s d=0.04) 
(Figure 2).

3.2. Multivariable linear regressions

There was a dependence of residuals, as assessed by a 
Durbin–Watson statistic of 0.368. Thus, generalized least squares 
were used and results indicated that the model to investigate the 
association of K-D baseline times using FRL, sex, race, and corrected 
vision as predictors were significant (F(4,661)=8.94, Nagelkerke’s 
R2=0.039, P<0.001, adjusted P<0.001) with FRL (P<0.001), race 
(P=0.01), and sex (P<0.01) being the significant predictors. There 
was no evidence of multicollinearity, as assessed by VIF (VIF range 
1.00-1.21). The overall model was able to explain 3.9% of the total 
variance of the dependent variable (Table 3).

There was a dependence of residuals, as assessed by a 
Durbin–Watson statistic of 0.008. Thus, generalized least squares 
were used and results indicated that the model to investigate the 
relationship of average NPC distance using FRL, race, sex, and 

Table 2. Comparison of VOMS pre-assessment and symptom provocation change scores between race and FRL status.
VOMS item White Black P FRL No FRL P

Pre-test 0.19±1.3 0.19±0.9 0.42 0.25±1.5 0.07±0.5 0.11
Smooth pursuits 0.02±0.3 0.04±0.3 0.61 0.03±0.3 0.01±0.1 0.73
Horizontal saccades 0.04±0.4 0.07±0.5 0.14 0.06±0.5 0.03±0.2 0.60
Vertical saccades 0.08±0.6 0.11±0.6 0.44 0.10±0.7 0.07±0.5 0.77
Convergence 0.05±0.5 0.04±0.3 0.68 0.04±0.5 0.05±0.4 0.71
Horizontal VOR 0.08±0.6 0.08±0.5 0.97 0.08±0.6 0.08±0.5 0.70
Vertical VOR 0.08±0.6 0.05±0.4 0.96 0.05±0.5 0.09±0.5 0.31
VMS 0.09±0.6 0.20±1.1 0.06 0.10±0.9 0.06±0.6 0.03
Average NPC distance (cm) 1.82±3.7 1.27±2.3 0.02 1.59±3.2 1.72±3.3 0.32
K-D baseline time 49.60±7.9 49.24±8.7 0.55 50.19±8.3 48.19±7.7 <0.001*
Pre-test is non-provocation symptom tasks. *Significant after Benjamini–Hochberg procedure with false discovery rate 0.05. VOMS: Vestibular/ocular motor screening, FRL: Free and reduced 
lunch status, VOR: Vestibulo-ocular reflex, NPC: Near point of convergence, K-D: King-Devick, VMS: Visual motion sensitivity
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corrected vision was not significant (F(4,656)=0.73, Nagelkerke’s 
R2=0.009, P=0.20, adjusted P=0.33), with race (95% CI=−3.58, 
−1.99, P=0.03) being the only significant predictor. There was no 
evidence of multicollinearity, as assessed by VIF (VIF range 1.00-
1.21) (Table 3).

4. Discussion

The purpose of the current study was to investigate racial and 
socioeconomic differences in symptom provocation scores on 
VOMS items, average NPC distance, and K-D test total time at 
baseline in high school student-athletes. The hypothesis that there 
would be no differences between groups must be rejected. The 
primary findings of this study indicate that baseline administration 
of the VOMS and the K-D test exhibits racial and socioeconomic 
differences. First, the K-D baseline times were slower (worse) 
among those that receive FRL (50.19±8.3 s) when compared 
to those that do not receive FRL (48.19±7.7 s); however, no 
significant differences were noted by race. Further, a multivariable 
model to identify the association between K-D baseline time and 
independent variables suggests that FRL status and race are both 
independently associated with K-D baseline time when controlling 
for other independent variables. As a group, White individuals 
(1.82±3.7 cm) had greater (worse) average NPC distances when 
compared to Black individuals (1.27±2.3 cm) with a small effect 
size; however, when controlling for multiple comparisons, 
that difference was no longer significant. Greater symptom 
provocation reported on the VMS item was noted among those 
within the FRL group, but again that difference diminished after 
multiple comparison analyses. It should be noted that the average 
NPC distance was not outside the clinically accepted normal 
values for the potential diagnosis of concussion [27,43]. Possible 
explanations for group differences may be neurobiological, 
anatomical, and/or disparity in nature.

Upwards of 50% of the brain’s network is dedicated to 
vision [44] and adding a vision-based performance measure has 

enhanced the detection of concussion [45]. Two central findings 
from this study include a component of vision that appears to be 
deficient in high school student-athletes. First, a potential saccadic 
tracking skill deficiency was noted by slower K-D performance 
among those of FRL. Second, although within a clinically normal 
range, a potential racial difference in average convergence distance 
was noted. Both convergence insufficiency and deficient saccadic 
tracking skills are common binocular vision impairments and the 
rates of visual impairment are higher in 12-19 years old compared 
to other age groups, apart from those 60 or older [31].

Although a racial difference in average NPC distance was 
noted before multiple comparisons, the effect size was small. 
Black student-athletes had a lower NPC distance and, similarly, 
Black children have been shown to report fewer eye-related 
symptoms on the Convergence Insufficiency Symptom Survey 
(CISS) compared to White children [46]. These findings may 
allude to discrepancies or disparities in objective versus subjective 
measures for vision among racially diverse student-athletes 
that warrant further research. Within this study, a difference of 
approximately 0.6 cm is likely clinically insignificant and within 
normal limits of measurement error. However, these modest racial 
differences could be explained by the high potential for error 
of objective NPC distance using the nose as the measurement 
landmark specified with the VOMS. Further, NPC distance using 
the tip of the nose adds subjectivity to the measure and an influx 
of anthropometric errors can arise from anatomical variation in 
nose shape and length. Facial morphology studies using three-
dimensional images have demonstrated racial differences in facial 
structure, including nose length between African Americans and 
the Welsh. African Americans displayed a less prominent nose and 
chin and more protrusive nasolabial fold when compared to the 
Welsh [47]. At present, there is a lack of racial or ethnic diversity 
in published VOMS norms, yet there is a substantial Black/African 
American presence in sport and higher-risk concussion sports. 
Suggestions to modify facial landmarks used for VOMS NPC 
measurements include using a less morphologically variable facial 
landmark, such as the lateral canthi (lateral confluence of upper 
and lower eyelid margins). Furthermore, assuring standardized 
administration methods may affect measurements [48]. Adding a 
more homogenous NPC measurement landmark to the VOMS like 
the lateral canthus may better align with measures used in eye care 
practices.

Previous research suggests that rates of uncorrected vision 
impairment are higher in low-income children due to poorer access 
to eye care services [39,40]. Further, hyperopia is suggested to 
be higher in non-Hispanic White children as compared to Black 
children [30], and uncorrected hyperopia has been negatively 
associated with progressive reading skills in youth [49] and 
adolescents [50] longitudinally. Binocular coordination of eye 
movements is essential for reading skills that also include the 
reading of numbers, as required by the K-D. Uncorrected vision 
problems can severely impact reading ability, and saccadic tracking 
skill deficits have been suggested to be a risk factor for poorer 
reading ability in adolescents [50,51]. Moreover, underdiagnosed 
and undertreated vision problems that influence the reading ability 

Table 3. Multivariable linear regression results for K-D baseline 
time and average NPC distance measures (# Observations = 669 for  
both models).

B SE 95% CI P

K-D baseline time
Intercept 46.89 1.91 [43.15, 50.64]
FRL 3.32 0.77 [1.80, 4.83] <0.001*
Race −1.99 0.81 [−3.58, −1.99] 0.01*
Sex 2.51 0.88 [0.79, 4.23] <0.01*
Corrected vision −0.31 0.44 [−1.17, 0.56] 0.49

Average NPC distance
Intercept 2.31 0.72 [0.91, 3.72]
FRL 0.09 0.29 [−.48, 0.66] 0.76
Race −0.68 0.30 [−1.27, −0.68] 0.03*
Sex 0.30 0.33 [−0.34, 0.95] 0.35
Corrected vision 0.15 0.17 [−0.48, 0.17] 0.35

*Significant if the 95% CI does not include 0.00 and after Benjamini–Hochberg procedure 
with false discovery rate <0.05
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and academic performance often present as frequent eye rubbing 
or blinking, a short attention span, exo/esophoria, diplopia, losing 
one’s place when reading, tilting the head to one side when 
reading, or holding reading materials closer to the face [52]. As a 
vision-based tool that has gained traction in concussion detection, 
the K-D requires intact saccades and rapid-reading abilities; thus, 
the poorer performance among those of low SES can, in theory, be 
explained by higher potential for uncorrected vision impairments.

In addition to possible vision impairments leading to K-D 
reading deficits, the K-D was also suggested to be a cognitive-

related tool due to pre-frontal cortex processing [53]. Rapid-
reading ability can also be a consequence of reading skill level, 
which is linked to academic achievement differences between 
high SES and low SES groups. Reading skill ability and academic 
achievement gaps are widened by SES inequities and disparities 
determined by differences in the kind of school and classroom 
environment students have access to, resources within the home 
and neighborhood, and exposure to social capital necessary for 
success in school [54]. FRL is a widely-used proxy for SES, but 
SES is a stronger predictor of academic achievement for White 

Figure 1. Violin plots of free reduced lunch (no or yes) by race and NPC distance (centimeters). Longer distances indicate worse performance.

Figure 2. Violin plots of free reduced lunch (no or yes) by race and K-D baseline times (seconds). Longer times indicate worse performance.
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students than students of a racial minority [54]. Moreover, the 
overall slower time to complete the K-D test could be also be due 
to potential reduced executive functioning and cognitive maturity 
of those with lower SES [55], as well as a greater likelihood of 
learning disabilities going undetected and undiagnosed among 
disadvantaged youth [56]. Results of our study parallel those 
by Weise et al. that found school-type differences on K-D 
performance among adolescents attending private versus public 
schools; however, school-type differences in the aforementioned 
study did not include a measure of SES such as FRL or Title I 
status [57]. In addition, the literature is sparse regarding how race 
may influence cognitive maturity or saccadic eye movements; 
however, the more complex the language [58] and the development 
of attentional capacity at a young age could influence eye 
movements and cognition in low-resourced areas [59]. However, 
these observations are purely speculative, given that the K-D test 
is not a direct measure of saccadic eye movements or cognitive 
function. It should also be noted that the significant differences in 
K-D test baseline results between FRL groups in this study are not 
believed to be clinically meaningful based on not exceeding the 
minimal detectable change threshold of 6.10 s [60] or the smallest 
reliable change index threshold of 3.61 s [61].

The VOMS symptom provocation score is an entirely subjective 
measure which is calculated by subtracting the reported score 
following each item by the pre-test value. This would lead the 
authors to believe that symptom provocation (i.e.) change scores 
were therefore subjected to the same limitations of previous 
symptom reporting tools [62-66]. Two main differences are that 
many scales use a 0-6 Likert scale while the VOMS uses a 0 to 
10 Likert scale and the VOMS is designed to look at the change 
in symptoms to try an account for the individuality of reporting. 
Specific to race, Black student-athletes reported higher symptoms 
when compared to White student-athletes on a concussion 
symptom survey [23]; however, Black children have reported 
lower symptoms on the CISS [46]. Divergent responses on 
symptom reporting on concussion-specific versus vision-specific 
surveys prevent an obvious explanation for the findings in the 
current student. Furthermore, previous studies on standard vision 
exams [28-30] and vestibular testing [32] reported differences in 
abnormal findings and increased prevalence rates across racial and 
SES groups, but those results do not align with the results from the 
current study. One exception was the VMS item, in which the FRL 
group had a statistically significant greater symptom provocation 
score (0.16±0.9 vs. 0.06±0.6), although the findings were no 
longer significant after accounting for multiple comparisons. 
These results did not appear to amount to any appreciable clinical 
significance as the differences at baseline were not only below the 
clinical threshold but within the SD range of the groups, and the 
effect size (Cohen’s d=0.11) was below the “small” threshold.

The debate regarding baseline testing for intra-individual 
changes versus normative comparison has long been discussed. 
While the most recent consensus statement did not suggest 
mandatory baseline testing, there are data to suggest that, for some 
clinical tools, intra-individual comparisons provide superior utility 
versus normative comparisons [67-69] and because various types 

of athletes [70-72], or athletes from varying backgrounds perform 
differently on testing [25,73,74]; however, this is not always the 
case [75-78]. Our model predicted <4% of the variance in K-D 
test performance. These results indicate that performance is not 
well-predicted by race, sex, FRL status, and vision correction and 
provides support for baseline testing due to the inter-individual 
variability in our cohort.

As discussed previously, Title I schools provide funding to support 
their educational system but financial support does not always reach 
the sports medicine/athletic training departments on campus. Hence, 
while schools may appreciate the added benefit of baseline testing, 
it may not always be feasible. Fortunately, tools like the VOMS 
are publicly available and do not require a fee for use. However, 
there are always costs associated with baseline administrations, and 
while some tests are free, they are time-intensive for staff members 
and students, and IT infrastructure necessary to securely and easily 
access medical records should be considered. 

4.1. Limitations

First, there is no perfect method to determine individuals’ SES, 
especially in a high school population, and thus, our findings are 
based on whether the student-athlete attended a school that met 
requirements for Title I or non-Title I status. This proxy for SES 
is widely utilized in educational research, but unfortunately, it is 
possible that some individual participants may belong to a different 
socioeconomic class that typically would not coincide with the need 
for FRL or Title I classification (e.g., affluent student at FRL school). 
However, we believe the quantity of those individuals is likely 
minimal. Furthermore, our data only included White and Black 
participants. Individuals from other racial or ethnic backgrounds 
(e.g., Asian, Hispanic/Latino) should be considered in future 
studies to add further diversity to test psychometrics and concussion 
literature. Finally, there was potential for inter-rater errors in test 
implementation and measurement. This study implemented the 
VOMS and K-D tests, which can be more affordable and easily 
implemented concussion screening assessments. Future research 
should examine if results are consistent with advanced laboratory-
based vestibular and oculomotor tools (i.e., eye tracking). Finally, 
longitudinal studies are needed to determine modifying factors 
at post-concussion intervals (e.g., 3 days, 1 week, and 1 month), 
including race/ethnicity and SES.

5. Conclusions

As the clinical diagnosis and treatment of concussion 
actively continues to incorporate multisensory measures that 
include vestibular and vision-based oculomotor tools, respect 
for sociodemographic diversity is warranted. With a higher 
probability of undiagnosed and uncorrected vision impairment, 
vestibular dysfunction, and saccadic eye tracking deficits likely to 
be more apparent as a consequence of poverty or health inequities, 
it is important that healthcare providers, especially those that 
diagnose and treat concussions, understand that the VOMS 
and K-D tests at baseline may be subject to sociodemographic 
factors of SES and race. Further, there is a greater likelihood of 
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learning disabilities going unrecognized and undiagnosed among 
disadvantaged youth, which may adversely affect performance 
on assessments such as the K-D [56]. Clinically, these results 
further emphasize the need for individual baseline assessments 
and growing need for generating more research on tools such 
as the VOMS and K-D in racially and ethnically diverse groups 
to add diversity to concussion literature. Pre-injury or baseline 
testing is commonly practiced by athletic institutions; however, 
in the absence of baseline data, clinicians rely on normative data 
for comparisons. Unfortunately, the utilization of normative data 
instead of pre-injury comparisons may increase false-positive [79] 
or false-negative rates [69] as also shown in the use of cognitive 
tests. If a patient is of a minoritized racial group or of low SES, 
normative data may not be an accurate or equitable reflection 
of expected performance post-injury or at the time of medical 
clearance. This is critical given the wide array of SES and racially 
diverse backgrounds that engage in an adolescent sport activity. It 
is recommended that when making interpretations on the potential 
clinical diagnosis of concussion using these tools, SES and race 
should be considered if comparing to norm-referenced data.
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