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ABSTRACT

Background: Early identification of patients who fail to lung stereotactic body radiation therapy (SBRT) 
is vital as they can benefit from salvage therapy. Main guidelines recommend computed tomography 
(CT) to assess response and use of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography 
(PET)/CT only when a local recurrence is suspected in CT. The pattern of radiation-induced lung 
injury caused by SBRT is different from changes seen after conventional radiation therapy in terms of 
extent, time of manifestation, and morphologic characteristics, and knowing this is crucial for proper 
monitoring of the tumor response. In certain cases, it may be difficult to differentiate response from 
progression or recurrence on CT and, in addition, some changes in CT take a long time to evolve before 
they are considered suspicious, making early diagnosis difficult. Metabolic changes often precede 
morphological changes, so 18F-FDG PET/CT quantitative and qualitative metabolic criteria can be 
useful in assessing early response and detecting relapses. However, the optimal practice for follow-up 
remains unclear and there is an active search for imaging markers for recurrent disease, including CT 
texture analysis, biomarker assays, new PET/CT isotopes, and magnetic resonance imaging.
Aim: The aim of the study was to review the radiological changes that are objectified after pulmonary 
SBRT and the metabolic changes in 18F-FDG PET/CT, to assess the usefulness of following up patients 
with 18F-FDG PET/CT.
Relevance for Patients: At present, the evaluation of response and diagnosis of relapse after SBRT 
are difficult and the incorporation of routine 18F-FDG PET/CT may have value in early diagnosis of 
relapse when the patient may still benefit from rescue treatment.
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1. Introduction
In the past two decades, newer methods of planning and 

delivering radiation therapy have been developed, allowing safe 
and accurate administration of very high doses of radiation to 
a selected target. Stereotactic body radiation therapy (SBRT) is 
defined by the American College of Radiology and the American 
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Society for Radiation Oncology as an “external beam radiation 
therapy method used to very precisely deliver a high dose of 
radiation to an extra-cranial target within the body, using either a 
single dose or a small number of fractions (hypofractionated)” [1]. 
In SBRT, the complex arrangement of multiple radiation beams 
converging on the target create a steep dose gradient with 
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high and ablative doses to the tumor and minimal exposure to 
normal surrounding tissues [2-4]. SBRT is now considered the 
standard of care for medically inoperable early stage non-small 
cell lung cancer (NSCLC) based on a range of prospective 
and retrospective reports which demonstrate high local tumor 
control, low rates of treatment-related toxicity and improved 
overall survival when compared to conventionally fractionated 
radiation therapy [5-7]. SBRT can also be used in early stage 
operable NSCLC that refuse surgery [7], in NSCLC with local 
relapse after surgery or radiotherapy, in multiple synchronous 
and metachronous primary lung cancers, and in NSCLC with 
oligometastatic or oligoprogression in the lung. The role of SBRT 
as locally ablative therapy in NSCLC continues to expand.

Although SBRT provides excellent local control rates (98% at 
3 years and 87% at 5 years) in patients with early-stage NSCLC, 
local recurrences may appear, most of them in the first 2 years after 
treatment, even up to 5 years later [6,8]. The assessment of response 
to SBRT is routinely done with computed tomography (CT) 
where the appearance of radiation-induced lung injury caused by 
SBRT is different from changes seen after conventional radiation 
therapy. The radiologist must be familiar with these changes 
to be able to assess response and to avoid the misclassification 
of benign changes as local recurrence of the tumor with the 
risk of unnecessary biopsies or surgery, or to avoid missing the 
opportunity to diagnose local relapse early when patients can 
benefit from salvage therapy [3,9,10]. Given that in certain cases 
the evaluation of the response with CT is problematic, PERCIST 
(positron emission tomography [PET] Response Criteria In Solid 
Tumors) criteria have been proposed for clinical practice as well 
as other 18F-fluorodeoxyglucose (18F-FDG) PET/CT qualitative 
and quantitative criteria, since it has been shown to have a high 
negative predictive value after SBRT for lung cancer. At present, 
there is no agreement on a fixed standardized uptake value (SUV) 
cutoff for differentiating fibrosis from local recurrence, and main 
guidelines only recommend 18F-FDG PET/CT when recurrence 
is suspected on serial CTs, and when 18F-FDG PET/CT findings 
suggest tumor relapse, histological confirmation is recommended 
in patients who are candidates for salvage therapy [11].

2. CT imaging findings after SBRT

Radiation induced lung changes are classified radiologically 
as early or late, taking into account the time interval after the 
completion of radiation therapy [2,12]. The early phase (within 
6 months post-SBRT) corresponds to the clinical and pathologic 
changes of acute radiation pneumonitis, and the late phase (after 
6 months post-SBRT) to chronic radiation fibrosis. Radiation 
induced lung injury is reported to occur in 62% of patients treated 
with SBRT in the acute setting and in the 91% of patients in the 
late setting, with the majority of patients remaining clinically 
asymptomatic [13].

Due to the complex beam arrangements in SBRT, the low 
dose regions are larger and irregular, and in contrast, the high 
dose area is uniform and smaller in size than in patients treated 
with conventional radiation therapy. This great conformality 

and homogeneity of the dose explain that the shape of SBRT 
induced lesions more precisely matches the initial treated volume 
and is often spherical, instead of linear (Figure 1). Reviewing 
the radiation planning CT is useful to interpret the images post-
treatment [2,9,14].

2.1. Early findings after SBRT

Lung abnormalities after SBRT do not usually appear at CT 
before 2-3 months after the end of the treatment, with an incidence 
of 30% at 3 months [2,15]. The median time interval to the 
detection of lung attenuation changes at CT is about 17 weeks [15]. 
This interval is longer than for conventional radiation therapy, in 
which changes are seen within 4 weeks after completion of the 
therapy [2,10,16].

Four CT patterns of early radiation pneumonitis have been 
described, following the classification by Ikezoe et al. (1) diffuse 
consolidation (Figure 2), (2) diffuse ground glass opacity, (3) 
patchy consolidations and ground glass opacities (Figure 3), and 
(4) patchy ground glass opacities [2,15,17]. In some patients, 
there is no increase in the density of the parenchyma in the area 
treated. The findings are defined as diffuse when changes exceed 
or are equal to 5 cm in maximum diameter or patchy if lung 
abnormalities do not completely fill the field of irradiation.

Lung abnormalities after SBRT are not usually seen at sites 
remote from the target volume. However, in patients with interstitial 
lung disease, especially honeycombing, radiation pneumonitis 
changes may be more extensive and extend beyond the radiation 
field [18]. Patients with emphysema, on the contrary, present 
lower rates of radiation pneumonitis [19]. Pleural thickening 
and reactive pleural effusions may occur in the first 6 months 
post-SBRT [2,9,12]. They are usually small, persist for months, 
disappear spontaneously, and do not increase spontaneously after 
a period of stability. When the pulmonary opacities appear before 
the treatment ends or beyond the radiation field, infection must 
be ruled out in the appropriate clinical scenario. Other findings 
strongly indicative of infection are cavitation and/or tree-in-bud 
opacities.

2.2. Late findings after SBRT

Changes at CT after 6 months post-SBRT appear in about 80% 
of patients and have been classified in three patterns, following 
Koenig classification [2,15,20]:

(1) Modified conventional: This pattern is the most frequent, 
can be found in about 50% of cases, and consists of a well-defined 
consolidation, volume loss, and traction bronchiectasis. These 
findings are like those seen in conventional radiation therapy, but 
less extensive.

(2) Mass-like fibrosis: This pattern has been reported in 7-20% 
of the cases. When consolidation and traction bronchiectasis are 
confined to a 2 cm circumferential margin around the original 
tumor the appearance is that of a mass-like area larger than the 
original tumor (Figure 3). This region corresponds to the maximal 
isodose curve delivered and conforms to the shape of the neoplasm 
treated.
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(3) Scar-like fibrosis: It is a linear opacity in the region of the 
tumor associated with volume loss. It has been reported in 11-21% 
of cases (Figures 4 and 5).

Shape and location of consolidations may change with time, 
because fibrosis causes deformity of the lung, with displacement 
of the changes toward or away from the hilum [21,22]. The pattern 

Figure 1. A 78-year-old male with severe COPD (chronic obstructive pulmonary disease) and domiciliary oxygen therapy. Incidental finding of lung 
nodule on chest X-ray. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) images before stereotactic 
body radiation therapy (SBRT) (A, B, and C) show a solid spiculated nodule with FDG uptake and SUVmax 13,7 suspicious for primary lung cancer 
(arrows). The patient was treated with SBRT in October 2016. 18F-FDG PET/CT images in December 2016 (D, E, and F) and March 2017 (G, H, and I) 
showed reduction in size and lower FDG uptake (SUVmax 4.1 and 3.8, respectively) (arrows). 18F-FDG PET/CT in 2018 showed a subpleural 
atelectasis with SUVmax 3.6 (J, K, and L) (arrows).
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Figure 2. A 73-year-old male, ex-smoker, severe COPD with home oxygen therapy and right upper lobectomy in 2000 (undifferentiated large cell lung 
carcinoma). In June 2015, a nodule appears in the upper left lobe with histological diagnosis of squamous cell lung cancer, with FDG and SUVmax 
7.3 uptake on 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) images (A, B and C). Treatment with 
stereotactic body radiation therapy (SBRT) ends in November 2015. Three months later, 18F-FDG PET/CT images (D, E, and F) show a post-SBRT 
pneumonitis, diffuse consolidation type, with decrease of SUVmax to 3.7 (arrows). In the 18F-FDG PET/CT images 11 months after the end of SBRT 
(G, H, and I) scar-like fibrosis is seen, stable in 2018 (J, K, and L) (arrows).
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Figure 3. A 83-year-old male, ex-smoker, with heart transplant for ischemic cardiomyopathy with severe heart failure in 2000. Severe COPD. Stage 
I squamous cell carcinoma of the lung cells in the upper left lobe. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed 
tomography (PET/CT) images before treatment with stereotactic body radiation therapy (SBRT) showed a solid and spiculated nodule in the upper 
left lobe with FDG capture and SUVmax 13.3 (A, B, and C) (arrows). Three months after SBRT the PET/CT shows changes consistent with patchy 
consolidation pneumonitis, associated with volume loss and decrease of the SUVmax to 2.3 (arrows). 18F-FDG PET/CT 12 months after SBRT 
(G, H, and I) shows a modification in lung changes, with rounded “mass-like” morphology and peripheral FDG uptake, with the SUV maximum of 3.5 
(arrows). Image results are stable on a CT scan performed 16 months after SBRT (J and K) (arrows).
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Figure 4. A 84-year-old male, smoker, with severe COPD, domiciliary oxygen therapy, and ischemic cardiomyopathy. He was diagnosed with a Stage 
I adenocarcinoma of the lung in the lower right lobe which was treated with stereotactic body radiation therapy (SBRT). The 18F-fluorodeoxyglucose 
(18F-FDG) positron emission tomography/computed tomography (PET/CT) images prior to SBRT (A, B, and C) showed the subpleural tumor in 
the right lower lobe with FDG uptake and SUVmax 8.2 (arrows). Six months after the end of SBRT, 18F-FDG PET/CT images (D, E, and F) show a 
ground- glass opacity and subsegmental atelectasis at the anterior lung node location (arrows).
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of fibrosis post-SBRT can evolve from a modified conventional 
pattern to a mass-like or scar pattern. This can happen even after 
24 months after therapy (which is unusual after conventional 
radiation therapy) and explains why the proportion of patients 
with a mass-like pattern of fibrosis increases after 2 years of 
follow-up. The mass-like pattern of fibrosis and the evolution 
from a modified conventional pattern to a mass-like pattern is 
two important imaging pitfalls that can be mistaken for tumoral 
recurrence (Figure 3). In addition, to these parenchymal changes, 
pleural thickening can be seen in more than half of patients. 
Sometimes pleural effusions may also develop but less frequently 
and usually resolve [2,12]. Features that are worrisome and 
suspicious for recurrent malignancy include the development of 
a new pleural effusion or a pleural effusion that increases in size 
6 months or longer after the completion of radiation therapy or 
when nodular pleural thickening develops [9].

The system of classification described above has shown modest 
inter-rater reliability [23]. Raziee et al. proposed a structured 
radiographic reporting tool for characterization of changes post 
SBRT, which includes five categories: Tumor in primary site, 
tumor in involved lobe, consolidation, volume loss, and ground 
glass or interstitial changes [24]. These categories are classified 
as increased, stable, decreased, obscured or not present in 
comparison with the previous CT. However, this scale showed 
only fair to moderate inter-rater agreement in all categories. This 
is probably due to the variability in defining patterns. The current 
literature regarding patterns of post-SBRT radiographic changes 
is fragmented, partly because there is still no standardized scale 
to score post-SBRT fibrosis patterns across trials, and therefore 
the results from a given study are not immediately comparable to 
those from another [25,26].

Although the standard imaging modality post-SBRT is CT, 
the optimal follow-up of these patients remains unclear as low 
accuracy of Response Evaluation Criteria in Solid Tumors 

(RECIST, version 1.1) for predicting tumor recurrence has been 
reported by different authors [26-28]. In the post-SBRT setting, 
the main limitation is that these criteria rely on diameter alone to 
classify response [29]. According to RECIST, an increase of at 
least 20% in the longest diameter of the tumor, measured in the 
plane of image acquisition (axial for CT) is considered as local 
failure. Unfortunately, benign changes of fibrosis after SBRT 
may appear as enlarging opacities, especially in the case of mass-
like fibrosis. Besides, the appearance of SBRT changes may be 
very irregular and this explains the interobserver variability in 
measuring non-spherical lesions. Another limitation of RECIST is 
the requirement that measurements be taken in the imaging plane, 
since craniocaudal growth may be a major predictor of recurrence 
and it is measured in coronal or sagittal plane.

Following a systematic review of the literature, Huang et al. 
identified several high-risk factors (HRF) for the detection of 
recurrent disease and differentiation of recurrence from radiation-
induced lung injury on CT images: Enlarging opacity at the SBRT 
site after 12 months (Figure 6), sequential enlarging opacity, 
convex bulging margin, loss of lineal margin, and loss of air 
bronchogram (including partial loss) [13]. The same authors added 
a new HRF: Growth in the craniocaudal direction (>5 mm and 
>20%) [30]. An enlarging opacity after 12 months was the best 
individual predictor for recurrence, and the craniocaudal growth 
the second-best predictor. The presence of three or more HRFs 
predicted local recurrence with high sensitivity and specificity 
over 90% [30]. Peulen et al. reported that the bulging margin 
(Figure 6) and the craniocaudal growth are the two best predictors 
and, when combined, sensibility and specificity for recurrence 
are 85% and 100%, respectively [31]. However, these authors did 
not find a statistically significant association between the loss of 
air bronchogram and pleural effusion with recurrence. Although 
for several authors an enlarging opacity after 12 months is highly 
suggestive of recurrence [25,32], other authors do not consider 

Figure 5. 66-year-old woman, smoker, with severe COPD, and incidental finding of lower lobe nodule on chest X-ray. Axial 18F-fluorodeoxyglucose 
(18F-FDG) positron emission tomography/computed tomography (PET/CT) images (A, B, and C) in January 2015 showed a solid lobulated lung nodule 
with FDG uptake (SUVmax 12.9) (arrows), suspicious for primary pulmonary neoplasm. As the patient is not operable, she was treated with stereotactic 
body radiation therapy, finishing the treatment in June 2015. A 18F-FDG PET/CT in October 2015 (D, E and F) showed a linear scar without FDG uptake.
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this finding useful as it is frequently found in patients without 
recurrence (Figure 3) [33,34]. For Halpenny et al., a new bulging 
margin is the only significant predictor for recurrence [35]. Other 
studies have insisted in that current criteria of interpretation of CT 
images are insufficiently accurate for clinical use in the detection 
of local recurrence, because HRFs may be found in at least 50% of 
patients without recurrence and three or more HRFs can be found 
in 25% of patients without recurrent disease [33,35,36].

Despite the mentioned limitations, the seven HRFs may be used 
in an algorithm proposed by Huang et al. to help in the adequate 
follow-up of these patients, preferably in a multidisciplinary team 
discussion [30,37]. Low risk patients without HRFs can be followed 
with CT; intermediate risk patient with one or two HRFs can undergo 
18F-FDG PET/CT or close follow-up with CT at 3 moths and high 
risk patients with three or more HRFs could proceed to biopsy or 
salvage therapy; 18F-FDG PET/CT could also be considered [3]. 
Although Takeda et al. reported that 18F-FDG PET/CT could help 
to detect local recurrences with greater accuracy, CT is still the first-
line modality to serve this purpose, and 18F-FDG PET/CT is only 
performed when recurrence is suspected. Biopsy and/or surgical 
or nonsurgical salvage therapy can be considered if safe and when 
investigations are non-reassuring.

Recently, a Delphi consensus process by international opinion 
leaders in thoracic radiation oncology and radiology concluded 
that the findings suggestive of a local recurrence on CT scan 
were as follows: Infiltration into adjacent structures, bulging 
margins, sustained growth, mass-like growth, spherical growth, 
craniocaudal growth, and loss of air bronchograms [38]. The 

Delphi consensus recommended use of 18F-FDG PET/CT scans 
only when local recurrence was suspected. 

In 2018, international expert opinions provided the following 
consensus statements for the follow-up of patients with early-
stage NSCLC treated with SBRT [38-40]:

Follow-up imaging modalities

1. Thoracic CT scans should be used as a part of routine imaging 
follow-up.

2. The data informing the use of FDG-PET/CT scans in the 
follow-up setting is limited.

Until further evidence is available, we recommend the judicious 
use of FDG-PET/CT scans and note that they are currently not 
included in routine imaging follow-up at most of the institutions 
represented by the consensus panel.

If there is a suspicion for recurrence, FDG-PET/CT scans are 
strongly recommended.

Frequency of follow-up imaging

1. In the 1st year of follow-up, thoracic CT scans are 
recommended at 3, 6, and 12 months after SABR.

2. In the 1st year of follow-up, thoracic CT scans are not 
recommended at 6 weeks after SABR.

3. In the 2nd year of follow-up, thoracic CT scans are 
recommended at 18 and 24 months after SABR.

4. In years 3 through 5 of follow-up, thoracic CT scans are 
recommended annually.

Figure 6. Same patient as in Figure 2. Tumor recurrence. 18F-Fludeoxyglucose (FDG) positron emission tomography/Computed tomography images 
in the axial (A, B, and C), coronal (D and E), and sagittal (F and G) plane show a nodule inside the scar, with FDG uptake and SUVmax 10 (white and 
black arrows). Left hilar and mediastinal lymphadenopathies have also appeared (yellow arrows).
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5. After 5 years, thoracic CT scans are still recommended; 
however, there is no consensus regarding the frequency with 
which they should be ordered.

Detecting local recurrence on follow-up CT imaging

1. RECIST 1.1 criteria are not sufficient for detecting recurrence 
in routine CT imaging follow-up.

2. A formal scoring system should be used to classify high-risk 
imaging features suggestive/predictive of local recurrence 
following SABR.

3. Previously published and validated high-risk features on CT 
imaging should be used as a formal scoring system.

4. The following CT findings should increase suspicion for a 
local recurrence:

 A. Infiltration into adjacent organs/structures
 B. Sustained growth over serial scans
 C. Bulging margins
 D. Mass-like growth
 E. Predominantly spherical growth
 F. Craniocaudal growth
 G. Air space obliteration/loss of air bronchograms.

Salvage treatment for local recurrence

1. Local salvage therapy without pathology is acceptable if 
imaging findings are highly suspicious and a biopsy is not 
safe or feasible.

2. Local salvage therapy without pathology is acceptable if 
imaging findings are highly suspicious and a biopsy has been 
attempted but was non-diagnostic.

CT: Computed tomography; FDG-PET: Fludeoxyglucose positron 
emission tomography; RECIST: Response evaluation criteria in 
solid tumors; SABR: Stereotactic ablative radiation therapy.

Both National Comprehensive Cancer Network and ESMO 
guidelines agree that the most appropriate follow-up strategy 
for NSCLC after SBRT treatment is to perform a chest CT 
every 3-6 months during the first 2 years and annually in the 
following 3 years [41,42]. However, as mentioned previously, 
SBRT frequently produces pneumonitis in the treated lung, with 
radiological changes on the control CT performed at 2-3 months 
after treatment, which can either resolve or evolve to fibrosis [34]. 
These changes are sometimes indistinguishable from the presence 
of residual tumor on CT. For this reason, the above-mentioned 
guidelines give an important value to the metabolic information 
provided by PET, recommending the selective use of 18F-FDG 
PET/CT (performed together with a diagnostic CT with contrast 
enhance if possible) when recurrence after SBRT is suspected on 
serial spiral chest CT (IIIB level of evidence) [41,42].

3. 18F-FDG PET/CT imaging findings after SBRT

The use of 18F-FDG PET/CT in routine monitoring of patients 
treated with SBRT is a controversial issue, and most experts still 
consider it as just an optional tool [11]. Some limitations of 
PET-CT compared to CT include cost, radiation dose, and availability. 

Resolution is also sometimes lower than that of CT, especially if the 
CT scan of PET-CT is performed in expiration or when studying 
small lesions. In PET studies false positives secondary to infection 
should be considered and correlated with the CT study.

Nevertheless, it is well known that metabolic information 
provided by 18F-FDG PET/CT has an additional value over CT 
in the assessment of response to therapy in patients with locally 
advanced lung cancer as changes in SUV treatment seem to be 
associated with tumor response and survival [43-49]. PET-CT also 
helps to guide biopsy when the CT images are confounding and 
are superior to CT for detection of regional and distant metastases.

In early stage lung cancer treated with SBRT, SUVmax 
measured in the primary lesions has demonstrated to have 
prognostic relevance concerning outcome and local control 
rates and to provide important information for patients 
receiving SBRT [50,51]. Furthermore, one of the more significant 
benefits of PET compared to structural imaging techniques is 
that metabolic changes tend to take place earlier than structural 
modifications. However, the best way to assess the response to 
treatment is not established.

In 1999, the European Organization for Research and Treatment 
of Cancer (EORTC) proposed some criteria to assess tumor 
response to therapy, based on 18F-FDG uptake as a metabolic 
response biomarker. Four degrees of metabolic response are 
distinguished: Complete response, partial response, stable 
disease, and disease progression [52]. These criteria recognize 
that subclinical metabolic changes can be observed early by PET 
with or without morphological correlation, meaning that tumors 
response or progression can be detected not only because of size 
changes but also when SUV values decrease or increase.

The PERCIST1.0 (PET Response Criteria In Solid Tumors) 
criteria [53] for the assessment of the response in solid tumors 
were proposed by Wahl in 2009. This document aims to provide 
useful response criteria for clinical practice and it is actually used 
in clinical trials that investigate the role of SBRT [54]. PERCIST 
criteria are based on a combination of the radiologic RECIST and 
the EORTC criteria and according to it, the response to therapy 
is measured as the percentage of the change in glucose uptake: 
Metabolic disappearance of the active tumor is considered a 
complete metabolic response, whereas a 30% decline in peak 
SUV comparing the most intense lesion before treatment and the 
most intense after treatment is considered a partial response.

Some authors reported that PERCIST-based response to 
treatment correlate with progression-free survival and loco 
regional control in patients treated with SBRT for early-stage 
NSCLC [55], while others defend that a meticulous visual 
assessment of 18F-FDG PET/CT images is of most importance in 
this setting [56], but there are not yet robust metabolic criteria for 
evaluating lung patients treated with SBRT. 

The high negative predictive value of 18F-FDG PET/
CT in follow-up after SBRT has been highlighted in several 
studies [57,58]. However, some authors have reported that 18F-FDG 
PET/CT performed early after treatment may be an insensitive test 
for the evaluation of recurrence as the inflammation involved in 
radiation pneumonitis can falsely elevate SUV within and around 
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the treated tumor bed, what can be translated into a sensitivity 
decrease of the technique [59]. This falsely elevated SUV might 
be in relation to the accumulation of FDG in macrophages present 
in post-treatment inflammatory processes and can be found up to 
1 year or even 2 years after treatment without later evidence of 
clinical recurrence [60,61].

In the last years, more authors are supporting the idea of the 
usefulness of 18F-FDG PET/CT in the follow-up of lung cancer 
treated with SBRT, always emphasizing the importance of a 
carefully interpretation of radiotracer uptake depending on the time 
of acquisition and the clinical context of each patient. Tyran et al. 
observed in their study that the metabolic response after SBRT occurs 
within the first 3-6 months after treatment, while late changes that 
can be evidenced up to 2 years and are usually seen as low metabolic 
activity [62]. Ding et al. also demonstrated in their study that a 
18F-FDG PET/CT performed 3 months after treatment can assess 
tumor response fairly accurately, using as complete response criteria 
a post-treatment SUVmax ≤1.9 [63]. In the same way, Bollineni et al. 
found in their series of 132 patients that a SUVmax >5.0 at 12 weeks 
after SBRT might indicate an increased risk of local failure and 
the need of a closer monitoring of these patients, especially those 
suitable of at least sublobar resection [51]. In addition, Sheikhbahaei 
et al. analyzed multiple studies showing that 18F-FDG PET/CT 
performed early after therapy not only predicted response but also 
resulted in the initiation of a new treatment plan [64]. Furthermore, 
multiple authors have reported that not only SUVmax after SBRT but 
also the relative reduction of early post-treatment values with respect 
to pre-treatment ones could predict outcome (local control and 
overall survival) [49,62,65,66]. The possibility of performing a dual-
phase 18F-FDG PET/CT with early and delayed PET images is under 
investigation, based on the idea that tumor FDG uptake continues to 
increase over the time for hours, while this does not usually occur 
in areas of inflammation [67,68]. However, this proposal remains 
still unclear and challenging to implement into clinical practice for a 
matter of cost and time.

Despite the usefulness of SUVmax for monitoring the tumor 
response to treatment, there are some considerations to be aware 
of. For example, tumors of small size or those located in areas 
of physiological movement can lead to underestimated SUVmax 
values and tumors with central necrosis may show little change 
in SUVmax over time [69]. For this reason, other parameters such 
as metabolic tumor volume (MTV) or glycolysis rate (Total 
lesion glycolysis [TLG]) have been developed, to integrate the 
information of metabolic activity within the tumor volume. 
However, evidence in the literature describing the value of these 
parameters is scarce [64].

4. Future Directions

4.1. Radiomics

Due to the limitations of the qualitative CT criteria used to detect 
recurrent disease after SBRT, there is an active search of accurate 
and standardized quantitative CT measures. As some of the tumor 
behavior information is contained in medical images but is not 
often appreciable by human eye, mathematical techniques have 

been developed in the field of radiomics, allowing the extraction 
of different imaging biomarkers with predictive value to later 
analyze them using bio-informatic systems. Radiomics image 
features analyzed through mathematical techniques describe the 
gray level patterns of an image: First-order statistics (distribution 
of intensity histograms), second-order texture features, and 
size and shape based features (sphericity, spiculation, and 
roughness) [29,70]. Using radiomic image features in areas of 
CT changes post-SBRT, Mattone et al. could predict recurrence 
as early as 6 months after SBRT before it can be differentiated by 
the human eye, and with higher prediction accuracy [71]. Texture 
analysis has also been used in CT and in 18F-FDG PET/CT to 
predict the response to SBRT of patients with early stage NSCLC 
and to quantify radiation-induced lung damage [72-76].

Just as in CT, radiomic features on PET can be classified into 
first, second, and high order. First-order radiomic features are those 
standard parameters which do not provide any spatial information, 
including SUVmax, VMT, and TLG [69,77-81]. Despite their 
promising results, efforts in radiomics are currently focused on 
second- and high-order statistical features which can provide spatial 
information and can measure the tumor heterogeneity. These features 
are also called “texture analysis” and seem to be related to greater 
tumor aggressiveness and worse response to treatment [82]. Although 
some of these features such as entropy or dissimilarity have already 
demonstrated its predictive value in patients with NSCLC treated 
with SBRT [74,83,84], others are still being tested and acquisition 
protocols and segmentation tools must be standardized and validated 
before incorporating them into clinical practice.

4.2. New treatment approaches: Immunotherapy and lung SBRT

There is a significant interest in approaches that combine RT 
with immunotherapy to improve systemic control in NSCLC due 
to SBRT can modulate the host immune system in the local tumor 
microenvironment and to activate a tumor-directed systemic 
immune response. However, it is not clear how best evaluate the 
response to this combined treatment as immune-related response 
criteria have been developed, but its value to evaluate response 
after combined SBRT and immunotherapy should be tested [85]. 
The contribution of 18F-FDG PET/CT in monitoring NSCLC 
treated with immunotherapy has been studied, and some metabolic 
criteria that could have a better prognostic value in the assessment 
of tumor response than current morphological criteria have been 
described [86]; therefore, 18F-FDG PET/CT could have a role 
on implementation of SBRT combined with immunotherapy. 
However, prospective studies supporting the usefulness of 
18F-FDG PET/CT in the follow-up of this combined therapeutic 
technique are needed to endorse its use in clinical practice.

5. Discussion

The assessment of response after lung SBRT has major 
limitations and there is a need to establish morphological and 
functional response criteria that can guide clinical decisions. In this 
article, we have reviewed the morphologic and metabolic findings 
on CT and 18F-FDG PET/CT after lung SBRT, highlighting the 
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difficulties in assessing early response and the limitations in 
unifying response criteria. The absence of robust response criteria 
has direct implications not only for disease management but also 
for clinical trials since treatment efficacy is evaluated according 
to different criteria and therefore outcomes cannot be compared.

The limitations of CT in this setting are well known: Suspected 
signs of relapse or progression are controversial, and some changes 
must occur over many months to be considered suspicious, which 
excludes the possibility of a confirmed response within a few 
months of treatment. A high rate of complete responses in the first 2 
years after SBRT treatment is described in the literature. However, 
size changes usually take time to occur and the radiological changes 
that appear in the adjacent lung parenchyma from the 3rd to 6th 
months make it difficult to measure tumor size and hence to assess 
response. This makes us think that may exist differences between 
researchers when evaluating the response to treatment during the 1st 
year of follow-up, since in few patients the tumor will disappear and 
yet they may have a complete response (with residual fibrosis). The 
high rate of complete response reported in the literature suggests 
that different radiological criteria may have been used.

CT is still considered the test of choice for assessing response 
to lung SBRT, although there is a clear role of 18F-FDG PET/
CT for the differential diagnosis of fibrosis against relapse or 
progression due to its high negative predictive value, and more 
and more studies point to the relationship of the SUVmax at 2 
or 3 months after treatment with the outcome. Furthermore, 
several studies point out that the metabolic response is earlier 
than the morphological response, but its prognostic value has not 
been clarified. The main reason for 18F-FDG PET/CT not to be 
considered the test of choice for follow-up is because FDG uptake 
in areas of pneumonitis limits the assessment of the treated tumor 
and causes false positive results. In addition, the lack of unified 
criteria for assessing metabolic response is also notable and there 
is no agreement on the cutoff point to be considered. 

In light of these difficulties, further studies are needed to clarify 
the usefulness of assessing the metabolic response in early follow-
up (perhaps with new tracers, associating magnetic resonance 
imaging, dual-PET, etc.) to determine the response to treatment 
before changes of pneumonitis prevent its correct assessment. 
In addition, regional or distant relapses would be assessed 
more sensitively than by CT, and the chances of offering rescue 
treatment when the tumor has not yet spread would be greater. 

The limitations of this review are significant, as it is not a 
systematic review and the studies mentioned include few patients 
and different methodologies. In addition, series of patients treated 
with lung SBRT often include patients without a histological 
diagnosis or molecular study. Metabolic and morphological 
response could be different for different types of tumors and studies 
with more patients are needed to find out if there are different 
response patterns depending on the histology and molecular study.

6. Conclusions

Imaging plays a crucial role in the follow-up of patients treated 
with SBRT and it often determines the next steps in a patient’s 

clinical management. Although the standard imaging modality 
post-SBRT is CT, anatomic criteria have been shown to have 
limitations in this setting and in patients with fibrotic changes the 
use of a combination of high-risk features and PET/CT findings, 
should be considered. The main guidelines do not consider 
routine 18F-FDG PET/CT for follow-up, mainly because post-
SBRT inflammation causes false positives, but there is increasing 
evidence in the literature of its potential value for monitoring 
response after lung SBRT.

Future challenges in imaging after SBRT include the 
standardization of response criteria in CT and PET imaging, 
radiomic analysis, and to determine optimal way to measure 
response to combined treatment with immunotherapy and SBRT 
in lung cancer.
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