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ABSTRACT

Being able to interpret ‘null effects’ is important for cumulative knowledge generation in science. To draw 
informative conclusions from null-effects, researchers need to move beyond the incorrect interpretation of a 
non-significant result in a null-hypothesis significance test as evidence of the absence of an effect. We explain 
how to statistically evaluate null-results using equivalence tests, Bayesian estimation, and Bayes factors. A 
worked example demonstrates how to apply these statistical tools and interpret the results. Finally, we explain 
how no statistical approach can actually prove that the null-hypothesis is true, and briefly discuss the philosophi-
cal differences between statistical approaches to examine null-effects. The increasing availability of easy-to-use 
software and online tools to perform equivalence tests, Bayesian estimation, and calculate Bayes factors make 
it timely and feasible to complement or move beyond traditional null-hypothesis tests, and allow researchers to 
draw more informative conclusions about null-effects. 
Relevance for patients: Conclusions based on clinical trial data often focus on demonstrating differences due 
to treatments, despite demonstrating the absence of differences is an equally important statistical question. Re-
searchers commonly conclude the absence of an effect based on the incorrect use of traditional methods. By 
providing an accessible overview of different approaches to exploring null-results, we hope researchers improve 
their statistical inferences. This should lead to a more accurate interpretation of studies, and facilitate 
knowledge generation about proposed treatments.

1. Introduction

Most scientific research questions are stated in order to
demonstrate the prediction that an effect or a difference exists.
Does a drug work? Is there a difference between participants
treated with antidepressants and patients going to psychother-
apy? Common practice is to analyse the resulting studies using
null hypothesis significance testing (NHST), for example by per-
forming a t-test or a Mann-Whitney-U-test, and to conclude that
there is a difference between a control and a treatment group
when a difference of zero can be statistically rejected.1

There are three scenarios in which the opposite research 
question, demonstrating the absence of an effect, or the absence 
of a difference between conditions, might be of interest:

1. Especially in clinical research, it might be important to
know if a cheaper or shorter treatment works just as well as a 
more expensive or longer treatment. Studies designed to an-
swer such questions investigate non-inferiority (e.g., people in 
one group do not score worse than people in another group) or 
the statistical equivalence of different treatments (e.g., people in 
one group score the same as people in another group).
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2. We might design a study that has the goal to demonstrate
the absence of an effect because we aim to falsify theoretical
predictions about the presence of a difference.

3. Even when we do not explicitly aim to test the absence
of a theoretically predicted effect, we should be prepared to ob-
serve a non-significant finding in any study we perform. Either
when examining a novel hypothesis, or when performing a study
that was designed to replicate a previous finding, we should be
able to statistically evaluate null-results.

In all three cases statistical tools need to be applied that can
provide an answer to the question whether we should believe,
or act as if, a meaningful effect is absent. As [4] has laid out in
his editorial, there is increasing attention to the fact that ‘null re-
sults’ need to be published in order to have a coherent scientific
body of results. Non-significant results are to be expected, even
when examining a true effect, and publication bias (not submit-
ting or publishing non-significant resuls) will inflate effect size
estimates in the literature [5,6]. By using statistical approaches
that allow researchers to evaluate null-results, researchers will
be able to learn more from their data, and publication bias can
perhaps be mitigated.

Researchers might want to know if a null-hypothesis is true,
and therefore be interested in ‘proving the null’. However, there
are no statistical techniques that can unconditionally answer the
question whether or not the null-hypothesis is true. As we will
see below, statistical techniques that allow researchers to evalu-
ate null results only allow conclusions about the null-hypothesis
in relation to some specified alternative hypothesis. The null-
hypothesis can not be statistically evaluated in complete iso-
lation. Furthermore, it is impossible in empirical research to
‘prove’ a prediction, since theories and predictions are inherently
probabilistic in an inductive empirical science. Rare events will
happen, and thus the absence of an effect is always concluded
based on a defined probability of making an error, or given a
particular level of certainty. The aim of the present article is to
give an overview of statistical methods suited to investigate ‘null
effects’, and explain how to translate the statistical results from
these methods into valid conclusions about the prediction that is
tested. We provide a hypothetical example that is analyzed using
four different methods, discuss how to interpret the results (as
well as possible misinterpretations), and briefly explain which
inferential frameworks these different methods are based on.

2. Investigating 'null effects'
It is common practice in empirical research to rely almost

exclusively on null-hypothesis significance testing to 
investigate the presence of an effect. Because a null-hypothesis

test can only reject the null (i.e. commonly the hypothesis of 
‘no effect’), it cannot be used to inform us about the absence of 
an effect in the population. When we observe a non-significant 
effect (e.g., p > α, where α is the level of significance chosen 
ahead of data-collection), all we can conclude is that, assuming 
the true effect size in the population is zero, the observed effect 
size was not sufficiently different from zero to reject the null 
hy-pothesis without, in the long run, being wrong more often 
than a desired error rate. This does not rule out the possibility 
that the true population effect size differs from zero. It is also 
possible that the experiment might have had relatively low 
power to de-tect the true effect size, or – equivalently – a high 
probability of making a Type 2 error (not rejecting the null-
hypothesis when a true effect is present in the population).

Null-hypothesis significance testing answers a specific 
ques-tion (i.e., can we reject the null-hypothesis?). One can 
argue that in most studies without random assignment to 
conditions, and perhaps even in some studies with random 
assignment, it can be expected that the true (population) effect 
size is always unequal to zero. Often an effect size of exactly 
zero (as assumed in the null hy-pothesis) is implausible [7]. For 
hypothesis testing, however, it is a useful model for 
comparison. When another question is of interest (i.e., can we 
conclude a meaningful effect is absent?), other statistical 
techniques should be used. Several statistical techniques have 
been developed to allow researchers to draw meaningful 
inferences about null-effects. Here, we will discuss equivalence 
testing, Bayesian estimation (i.e., the ROPE proce-dure) and 
Bayesian hypothesis testing (i.e., the use of Bayes fac-tors). 
We will demonstrate these different approaches using a 
fictional dataset from an imaginary study. Imagine, you want 
to investigate whether mindfulness meditation has an effect on 
lower back pain (LBP), which is an increasingly common prob-
lem among desk-working adults. In a fictional study patients 
with lower back pain are recruited and randomly assigned to ei-
ther an eight week mindfulness meditation class (the treatment 
group) or an eight week waiting list condition (a passive con-
trol group). At the time of inclusion in the study and after the 
eight week study period self-reported lower back pain intensity is 
measured on a 100mm Visual Analogue Scale (VAS) [8,9]. The 
dependent variable to be analyzed is the difference between the 
VAS scores at the end and start of the study. The mean change 
over the eight week period between the treatment group and the 
control group is examined using a two-sample t-test.2

2The study design and analysis plan used herein is simplified for illustrative purposes. Practitioners might in reality consider a multilevel analysis to better account for
different sources of variation [10]. The general recommendations in this paper also apply to more complex models.

Distributed under creative commons license 4.0 DOI: http://dx.doi.org/10.18053/jctres.03.2017S2.007

http://dx.doi.org/10.18053/jctres.03.2017S2.007


Harms and Lakens | Journal of Clinical and Translational Research 2018; 3(S2): 382-393 384

The sample size of the study needs to be determined based 
on an a priori power analysis. Based on a discussion with ex-
perts in the field, the smallest effect size of the treatment that is 
still deemed worthwhile is Cohen’s d = 0.30, and the study is 
designed to have a high probability of observing a statistically 
significant effect, if there is a true effect at least as large as this 
smallest effect size of interest. Assuming it is relatively easy to 
get people to enroll in the study, and further assuming the re-
searchers want to prevent incorrectly concluding the two treat-
ments differ, the alpha level is set to 0.01 and the desired power 
for the smallest effect size of interest is set at 90%.3 This means 
that if there is a true effect of d = 0.30 or larger, we have at least 
90% chance of observing a significant effect (in the long run). 
Based on the desired error rates, the power analysis indicates 332 
patients per group should be enrolled in the study.

For the imaginary study we simulated random samples us-
ing R from two independent normal distributions.4 The fictional 
measurements collected from 664 participants are visualised in 
Figure 1. The mean change in self-reported lower back pain in-
tensity on the 100mm VAS over the eight week period (and 
stan-dard deviations) are −2.30 (14.77) in the Meditation group 
and−0.39 (15.13) in the control group.
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Figure 1. Plot for the data of the imaginary study. Each dot represents a 
single case. Box plot shows median and 25% and 75% quartiles. Y-axis 
is dependent variable, i.e. Change in pain intensity after either 8 weeks of 
meditation class or after 8 weeks of being on the waiting list.

2.1. Null-hypothesis significance test

A common first question in experiments where participants 
are randomly assigned to two conditions is to examine whether 
we can statistically reject a difference between the groups that is 
exactly zero. This null hypothesis can be examined by perform-
ing a t-test with the chosen significance level of α = 0.01. The

two-sample Welch’s t-test (which does not assume equal vari-
ances) yields t(661.63) = −1.64, p = .101. The p-value is not 
statistically significant, which means the estimated population 
difference in the data is not extreme enough to reject the 
hypoth-esis that the true changes in pain scores in both groups 
are the same. A non-significant test result does not mean that 
the null hypothesis is true. Non-significant results simply 
indicate that the data are not surprising if we assume there were 
no true dif-ferences between the conditions. This might be 
because there is no difference between the two populations 
from which the two groups are sampled, in which case a non-
significant effect is ex-pected with a frequency of 1 − α = 
0.99. But it is also possible that there is a difference, but due to 
sampling error, it was not observed, which should happen 10% 
of the time if the true ef-fect size for which we have 90% power 
is d = 0.30 (and more often if the difference between groups in 
the population is smaller than d = 0.30).

It should be noted that there are different frameworks for 
performing significance tests in frequentist statistics. 
Statistician Sir Ronald Fisher introduced the concept of 
significance tests. In the Fisherian test, a p-value is computed 
under a null-hypothesis. Importantly, in the Fisherian 
significance test no alternative hy-pothesis is specified. Jerzy 
Neyman and Karl Pearson extended on Fisher’s significance 
tests (much to Fisher’s dismay) by in-troducing the concepts 
of power and alternative hypotheses [12]. The goal of Neyman-
Pearson significance testing is to warrant long-run error rates. 
This requires an a priori power analysis (as was done above) 
where an alternative hypothesis is specified and the long-run 
Type 2 error rate is chosen. In applied practice, a hybrid has 
evolved that combined aspects of the two paradigms of 
statistical testing [13]. For proper statistical inferences it is 
important to use the statistical methods in the formally correct 
man-ner, in line with the theoretical basis upon which they were 
de-veloped. In this section and the section on equivalence 
testing, we focus on the Neyman-Pearson approach of 
hypothesis test-ing and interpret the results of a statistical test 
as a dichotomous decision how to act for which we have 
decided on long-run error rates.

A null hypothesis significance test cannot distinguish be-
tween the conclusion that an estimated population difference is 
too small to be considered meaningful, or an inconclusive result 
(i.e., the effect is not statistically different from zero, but also 
not statistically smaller than any effect you care about). This 
often leads researchers to believe non-significant results are not 
informative. While a non-significant result in a null-hypothesis 
significance test per se does not allow us to decide between the 
absence of a meaningful effect, or an inconclusive result due to 
low power, the data might be informative when analyzed with

3Ideally, the alpha level is set based on a cost-benefit analysis of Type 1 and Type 2 errors, see [11].
4The scripts for generating the simulated samples, including the chosen population parameters (which are usually unknown to the researcher), are included in the
accompanying OSF repository.
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statistical tests that do allow researchers to draw more useful 
conclusions about null-effects.

In the past researchers were advised to interpret non-
significant results by performing a sensitivity analysis, and re-
port an effect size the study had high power to detect. For ex-
ample, if a study had 90% power to detect an effect of d =  0.30, 
researchers might conclude that if there is an effect, it would 
most likely be smaller than d = 0.30. This is referred to as the 
‘power approach’ [14,15]. Based on the absence of a signifi-
cant effect, researchers would conclude that it is unlikely that a 
true effect as large or larger than a specific size is present. How-
ever, the ‘power approach’ is superseded by the development of 
equivalence tests [14], and is no longer recommended.

2.2. Equivalence tests

There is no statistical procedure that can confirm that the dif-
ference between two groups is exactly zero (beyond sampling 
the entire population, and finding that the observed difference or 
effect is exactly 0). However, it is possible to test whether an 
effect is close enough to zero to reject the presence of a mean-
ingful difference. In this approach, researchers need to specify 
the difference that is considered too small to be meaningful, the 
smallest effect size of interest (SESOI). The SESOI is in clinical 
domains also referred to as the ‘minimal clinically important dif-
ference’ (MCID). A statistical test (very similar to the traditional 
t-test) is performed that examines whether we can statistically re-
ject the presence of a difference as extreme, or more extreme, as
the smallest difference we care about. If we can reject the pres-
ence of a difference (with a desired alpha level) we can act as if
the difference is practically equivalent to zero. This procedure
is known as equivalence testing [16].

For clinical scenarios in which pain intensity is measured us-
ing a 100 mm VAS in patients with lower back pain, a difference 
of 9 mm is considered to be a minimal clinically important 
dif-ference. This is based on the finding that a difference of 9 
mm is the point where patients indicate that they subjectively 
feel ‘slightly better’ instead of ‘equal’ [17]. Note that this is 
only one approach to determine a smallest effect size of 
interest, and other justifications for a smallest effect size of 
interest are possible [18]. Ideally, the SESOI should be 
informed by theory and previous research (such as meta-
analyses or systematic reviews). The SESOI needs to be 
determined before collecting the data (similar to decisions 
about the sample size, the alpha level, and the desired 
statistical power). An informative study should be designed to 
have sufficient power both (i) to detect an effect that exceeds the 
SESOI and (ii) to demonstrate equivalence to zero or another 
specific value (thus rejecting the smallest effect size of 
interest).

One way to test for equivalence is to perform the Two One-
Sided Tests (TOST) procedure. A lower (∆ L ) and upper (∆ U )
equivalence bound is specified (e.g., a difference of − 9 mm or
9 mm on a 100 mm VAS). A first one-sided test is performed to
examine whether we can reject effects smaller than ∆ L = − 9
mm, and a second one-sided test is performed to test whether we
can reject effect larger than ∆ U = +9 mm. If both one-sided
tests are significant, we reject the presence of a difference more
extreme than ±9 mm, and conclude that the group difference is
statistically equivalent to zero, given the equivalence bounds that
were chosen.

−10 −5 0 5 10

Mean Difference

Equivalence bounds −9 and 9
Mean difference = −1.906 

 TOST: 98% CI [−4.612;0.801] significant 
 NHST: 99% CI [−4.903;1.092] non−significant

Figure 2. Visual representation of the equivalence test. Plotted is the con-
fidence interval for the mean difference between the two groups. Based on
our choice for an α of 0.01 the bold line visualizes the 98% confidence
interval used for the TOST approach, while the thin 99% confidence inter-
val is used for the traditinal significance test against the null hypothesis of
zero difference. The equivalence test is significant, which can be inferred
from the fact that the 98% confidence interval does not overlap with the
equivalence bounds of − 9 mm and +9 mm and we can reject the presence
of a clinically meaningful effect.

[19] created an R-package (TOSTER) and a spreadsheet to
perform equivalence tests for t-tests, correlations, proportions,
and meta-analyses. Performing an equivalence test (again us-
ing Welch’s t-test) on our fictional data, with an α-level of
0.01, yields a significant result (t1 (661 .63) = 6 .11, p < . 001;
t2 (661 .63) = − 9.40, p < .001). The result is vizualized in
Figure 2, where the 98% confidence interval is plotted and com-
pared to the equivalence bounds of − 9 mm and +9 mm. The
width of the confidence interval is 1 − 2α since two one-sided
tests are performed, both of which need to be significant to con-
clude equivalence [16]. Using a Neyman-Pearson approach to
statistical inference, in which the goal is to make dichotomous
decisions while controlling error rates at a desired level, we can
act as if the difference between the two groups is smaller than
the minimal clinically important difference of ±9 mm, without
being wrong too often in the long run. It is important to note,
that the confidence intervals here are only used to check whether
the 98% confidence interval falls within the equivalence bounds.
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This is equivalent to performing the two one-sided tests (TOST)
explained above. The interpretation of confidence intervals in a
frequentist estimation framework has been critically discussed,
e.g. by [20].

The present example represents the case of a non-significant
result that is equivalent to zero. It should be noted, that the equiv-
alence testing approach also allows for significant and equiva-
lent outcomes: If a much larger sample size had been collected 
and the same mean difference was observed, the 99% confidence 
would no longer overlap with zero, which would allow us to re-
ject the null-hypothesis. With both the traditional significance 
test as well as the equivalence test being significant, we can con-
clude a mean difference that is statistically different from zero, 
while at the same time being practically insignificant.

Accessible introductions to equivalence testing are available 
[14,18,19], and equivalence tests can be performed in R, using a 
spreadsheet [19], or using the free software jamovi. We provide 
scripts for R [1] and jamovi [3] to reproduce the analyses and 
results in this paper as supplemental material.

2.3. Bayesian estimation

Frequentist statistics, which underly null-hypothesis signifi-
cance tests and equivalence tests, have the goal to control error 
rates in the long run. Researchers can’t know whether the con-
clusion made for any single study is one of these errors. Bayesian 
statistics allows researchers to make statements about the prob-
ability of single events and specific hypotheses, given the ob-
served data because it uses a different understandings of ‘proba-
bility’. The debate about which definition of probability is ‘cor-
rect’ or more adequate has led to a debate among statisticians 
and philosophers of science that has been going on for many 
decades. Luckily, researchers don’t need to choose a side (unless 
they want to), because both approaches can be used side-by-side 
when analysing data. Excellent introductions to Bayesian statis-
tics from an applied perspective on statistics can be found in [21] 
or [22].

Bayesian statistics is best understood in the context of statis-
tical modelling. A statistical model is a mathematical description 
of the probability of data. In Bayesian statistics a model con-
sists of three different parts. The first part is called a prior dis-
tribution: For each parameter we choose a probability distribu-
tion that describes expectations about possible parameter values. 
This prior can be understood as our ‘belief’ before seeing the 
data (hence the prior). This terminology already highlights the 
distinction between the frequentist and the Bayesian understand-
ing of probability: While frequentists consider ‘probability’ as 
a statement about long-term frequencies of events, Bayesians 
think of ‘probability’ as a ‘degree of belief’. This subjective in-
terpretation is easily explained – and very intuitive to some – but

not without criticism. Even among Bayesians there is disagree-
ment about the subjective nature of the prior. Gelman et al. 
[23] provides one accessible commentary on this debate.

As the second part of a Bayesian model, we take the observed
data into account through a likelihood function, and calculate 
a posterior distribution through the use of Bayes’ theorem. In 
mathematical notation this is

P (θ|Data) =
P (Data|θ) · π(θ)

P (Data)

Distributed under creative commons license 4.0

where π(θ) is the prior distribution for our parameter θ, and P 
(Data|θ) is the likelihood function of the model. P (θ|Data) is 
the posterior distribution of the parameter after seeing the data 
(i.e., the conditional probability of the parameter values given 
the observed data). The posterior distribution is thus – analo-
gous to the prior distribution – our belief about different param-
eter values for θ after having seen the data. When moving from 
a prior to a posterior distribution credibility is reallocated from 
the prior distribution to a posterior distribution that represents 
credibility informed by both the prior information and the data. 
If the prior distribution is accepted to represent a valid 
allocation of belief, the posterior distribution represents 
rationally updated belief through the observed data. The term P 
(Data) in the de-nominator is a normalizing constant in order 
for the posterior P (θ|Data) to be a proper probability 
distribution. We will later refer to it in the section about Bayes 
factors as the marginal like-lihood of the model (since it is the 
likelihood marginalized over all parameter values), also called 
model evidence.

Kruschke et al. [24] introduced a pre-defined Bayesian 
model that can be used to draw inferences about the estimated 
differences between two independent groups. This procedure 
provides researchers with a simple and easy-to-use test to 
evaluate the data in a Bayesian estimation framework. 
When using a Bayesian sta-tistical model, samples from the 
posterior distribution are gener-ated which can be used to make 
inferences about the data. One way to summarise the posterior 
distribution is to provide inter-vals of parameter values that 
are considered to be most credi-ble. In Bayesian statistics 
Highest Density Intervals (HDI) are commonly used. For 
example, a 89% Highest Density Inter-val contains the 
values which, based on the statistical model used (including 
the prior distribution), are considered the 89%most credible. 
For the pre-defined model by [24] the posterior samples can be 
generated and summarised using the ‘BEST’ R-package [25] or 
a web-app [26]. Importantly, even if only sum-maries are 
presented such as means, standard deviations, or cred-ibility 
intervals, the whole posterior distribution is available to 
provide the statistical inference [27].
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In our imaginary study where we compare an 8-week med-
itation class to patients on a waiting list we find a 95% posterior 
Highest Density Interval (HDI) of [−4.24; 0.32] for the 
difference in pain intensity between the two conditions. This 
means that the 95% most credible values for the difference in 
means, given our model, which incorporates both the prior 
information and the observed data, lie between −4.24 mm and 
0.32 mm. Figure 3 visualizes this result.

Some differences between the confidence interval reported 
above and the Bayesian HDI are to be expected. The prior af-
fects the width and location of the HDI in Bayesian estimation, 
and whenever the priors that are used for the model are not uni-
form, an HDI and a confidence interval will differ to a certain 
extent. With sufficient information from the observed data, the 
collected data will outweigh the prior, but with smaller amounts 
of data, it can be advisable to explore the impact of different 
priors on the inference. In the BEST model, the priors are not 
uniform but chosen to have minimal impact on the inferences, so 
even if the number of observations is relatively small, the prior 
should not have too much influence on the results [24].

The posterior distribution can be used to answer several other 
questions as well. Besides the HDI, we can find the most cred-
ible value for the difference between the two groups, which 
would be the posterior mode, or Maximum A Posteriori (MAP) 
estimate, which is −1.81 (and differs slighty from the 
frequentist estimate of the difference due to the prior). When 
one aims to make a dichotomous decision about parameter 
values based on the posterior distribution, Kruschke et al. 
[27] propose to define a region of practical equivalence
(ROPE) which is identical to setting equiva-lence bounds
based on a smallest effect size of interest as laid out above.
The ROPE procedure uses the following decision rule [28]:

If the 95% HDI of the [parameter’s posterior dis-
tribution] falls completely outside the ROPE than
reject the null value, because the 95% most cred-
ible values of the parameter are all not practically
equivalent to the null value. If the 95% HDI of the
[parameter’s posterior distribution] falls completely
inside the ROPE then “accept” the null value for
practical purposes, because the 95% most credible
values of the parameter are practically equivalent to
the null value. Otherwise remain undecided.

By comparing the 95% HDI with the region of practical
equivalence from∆L = −9mm to∆U = +9mm, based on the
same equivalence bounds as before, researchers can conclude
equivalence when the HDI lies within the region of practical
equivalence (or between the equivalence bounds). Because the

95% HDI ([−4.24; 0.32]) lies well within those bounds (as can 
be seen in Figure 3), we declare a difference of exactly zero to 
be accepted for practical purposes based on the decision rule 
above. We do not, however, accept or reject any other specific 
value within the ROPE. In the vocabulary of Bayesian statistics, 
using a decision rule on a posterior distribution of a single 
model does not constitute 'hypothesis testing'. The term 
'Bayesian hypoth-esis testing' refers strictly to the use of Bayes 
factors for model selection, which we will discuss in the next 
section. An alter-native way to investigate practical equivalence 
using a Bayesian posterior distribution would be to examine the 
probability mass contained in the ROPE [29]. It is important to 
highlight that the basis for inference is the full posterior 
distribution. Thus, it is up to the researcher to decide whether 
they want to make a dichotomous decision about a single 
parameter value or rather make a probability statement (see 
Discussion).
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Figure 3. Histogram with superimposed density estimate of samples from 
posterior distribution for the Bayesian t-test model [24]. Thick bar is the 
95% Highest Density Interval, indicating the 95% most credible values for 
the mean difference between the two groups. The square in the interval is 
the Maximum A Posteriori estimate, i.e. the most credible value from the 
posterior distribution.

The Bayesian ROPE procedure is quite similar to equiva-lence 
tests, but there are several important dinstinctions. In the Bayesian 
approach we can make statements about which values we believe 
are most credible, based on the data and the model, while in 
frequentist statistics we make dichotomous decisions based on 
long-run error rates. Frequentist statistics is concerned with 
frequencies of events in the long run. Null-hypothesis sig-
nificance tests and equivalence tests as discussed previously aim 
to control the rate at which incorrect conclusions are drawn about 
the presence or absence of effects at pre-specified levels. As a 
consequence, the width of a confidence interval is directly re-lated 
to the chosen α level. In the Bayesian approach, on the other hand, 
no statements about rates of decision errors can be made without 
additional assumptions and analyses. Kruschke et al. [27] use a 
95% interval because of the convention to set the significance 
level at 5%, but the width of the HDI should only be seen as a
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useful summary of the complete posterior distribution, and is not
related to the 5% Type 1 error rate of the confidence interval.5

2.4. Bayesian hypothesis testing with Bayes factors

The ROPE procedure uses Bayesian statistics to estimate the
parameter values that are most credible and then uses a decision
rule to accept or reject specific values. Bayesian statistics can
also be used to directly test two competing models. Hypothesis
testing can be considered as a special case of model selection,
where two specific hypotheses are expressed in terms of com-
peting models. One way to perform this type of model selection
in Bayesian statistics (or Bayesian hypothesis testing) is to com-
pare the marginal likelihoods of two modelsM0, the null model,
and M1, the alternative model, and quantify the relative model
evidence in terms of a ratio:

BF01 =
P (Data|M0)

P (Data|M1)

This ratio is called a Bayes factor and allows statements
about relative model evidence. A Bayes factor of BF01 = 4.2

can be interpreted as ‘the data provide 4.2 times more evidence
for M0 than for M1’.6 Bayes factors indicate by what amount
the relative belief in the models should shift according to rational
Bayesian belief updating:

P (M0|Data)

P (M1|Data)︸ ︷︷ ︸
Posterior Odds

=
π(M0)

π(M1)︸ ︷︷ ︸
Prior Odds

× P (Data|M0)

P (Data|M1)︸ ︷︷ ︸
Bayes factor

The most common approaches to calculating Bayes factors
model the null-hypothesis as a point, with an alternative model
that distributes the probability of the true value across a range of
possible values. This choice for a null-model is generally sim-
ilar to frequentist hypothesis testing, where the null hypothesis
is commonly also a point hypothesis of exactly zero. For Bayes
factors that closely resemble traditional statistical tests, the two
competing models are distinguished by different prior distribu-
tions for a parameter (usually a test statistic). Defining a rea-
sonable alternative model is an important part of calculating a
Bayes factor. There are different ways in which the alternative
model can be specified. One way is to use researchers’ beliefs or
expectations of theoretical predictions. Another way would be
to use data observed in previous studies to inform the alternative
model [31,32].

Figure 4 illustrates the two models compared when calculat-
ing a Bayes factor. In the figure M0 is represented by a point-
null hypothesis and M1 is represented by a distribution that as-
sumes small effect sizes are more likely than large effect sizes,
but which is not very restrictive and assigns probabilities to a
wide range of possible values.
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Figure 4. Visual representation of the Bayes factor as Savage-Dickey ratio
[37]: The Bayes factor can be understood as the ratio between the posterior
and the prior at δ = 0 (indicated by the two grey dots).

A common criticism on Bayes factors is that they are much
more sensitive to the specification of the prior than Bayesian
model estimation. While the data quickly overwhelms the prior
in a Bayesian estimation framework (such as the ROPE proce-
dure), the priors in a Bayes factor have much more weight. It is
important to note, however, that priors have different purposes
in the two approaches: In Bayesian models for estimation, the
priors are used as a device for regularization and shrinkage of
parameter estimates. This can be driven by subjective beliefs or
statistical considerations (see discussion on subjective and ob-
jective use of priors above). For Bayes factors, on the other
hand, priors should represent the predictions of a theory. There-
fore, researchers have cautioned against the use of ‘default’ pri-
ors when calculating Bayes factors [33], which are a compromise
between general expectations about effect sizes and useful math-
ematical properties [34], but these default model specifications
should only be chosen if they actually reflect a useful alternative
model given the research question. Moreover, Bayes factors –
very much like p-values – do not convey information about the
magnitude of an effect or the uncertainty in its estimation. See
[35] for additional criticisms on Bayes factors.
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Bayes factors can be used to examine null effects by quanti-
fying the relative evidence in the data for a null-model compared 
to an alternative model. In the Bayes factor calculation for our 
hypothetical data we wanted the prior for the alternative model 
to represent our expectation about the presence of a true effect. 
If our 8-week meditation class reduces pain intensity on a 100mm 
VAS scale compared to the active control condition, we expect it 
to be similar in size to other non-pharmaceutical interventions. 
Hoffman et al. [36] performed a meta-analysis of different 
psychological inter-ventions on pain intensity in patients with 
chronic lower back pain, and provided an estimated meta-
analytical effect size of d = 0.62 (95% CI: [0.25; 0.98]) when 
comparing the effect of cognitive-behavioral therapy (CBT) 
against a waiting list con-dition. Therefore, we calculate a 
Bayes factor based on the expectation that a mindfulness 
meditation intervention might have a similar effect size.

We specify an alternative model with a normal prior 

distribution centered on 0.62 with a standard deviation of 0.37 
(calculated from the confidence interval): M1 : δ∼N(0.62,0.37). 

The M1 model is compared against the null model M0 with a 
prior that has its point mass at 0 (i.e. a point null hypothesis).

A Bayes factor for the t-test  from our example study yields 
BF01 = 2.95 [38]. We can thus conclude that the data is 2.95 
times more in favour of the null model compared to the 
informed alternative model that we specified. The Bayes factor 
can be represented visually as in Figure 4: It shows the ratio 
between the height of the prior and the height of the posterior 
distribution at δ=0, the point of interest for the null hypothesis. 
This ratio is called the Savage-Dickey ratio [37]. Although 
Bayes Factors can be interpreted as a continuous measure of 
model evidence, thresholds for inter-preting Bayes factors have 
been proposed [39], which might be useful for researchers 
who begin to report and interpret Bayes factors. A Bayes factor 
of 1 indicates the data are equally likely under both models. 
Bayes factors between 1 and 3 constitute mere ‘anecdotal’ 
evidence, which is considered ‘worth not more than a bare 
mentioning’ [39]. Thus, although the data support the null model 
over the alternative model specified by the prior, there is no 
good reason to conclude in favor of either model – at least if not 
either model is much more reasonable than the other a priori 
without respect to the data (we extend the discussion on prior 
belief in each model below). Stronger model evidence would be 
desirable, which means more data need to be collected [40].
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effect size

(A) Classic NHST (two−sided)

H0 H0H1

∆L 0 ∆U

effect size
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ROPE

∆L 0 ∆U

effect size

(C) Bayesian Estimation (BEST) / ROPE
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M0

0
effect size

(D) Bayes factor
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Figure 5. Illustration of the different hypotheses under investigation [18].
(A) The classic two-sided significance testing aims to reject a point null
hy-pothesis (here an effect size of exactly zero). (B) In equivalence test,
the H0 of no equivalence is tested (grey region), so the white area is the
rejection region. (C) For the Bayesian estimation approach, the 95%
highest density interval of the posterior is compared against the Region of
Practical Equiv-alence (ROPE) between ∆L and ∆U . (D) For the Bayes
factor, two models are compared that differ in their prior distributions:
TheM0 prior is a point mass of 1 at an effect size of 0, the alternative
model M1 is here plotted as a Normal distribution as an example. Note,
that other alternative models can be used, e.g. centered on a value derived
from theory or previous studies (see Figure 4).

The difference between the result of the Bayes factor analy-
sis, the equivalence test, and the ROPE procedure reported ear-
lier has several reasons. Most importantly, the questions that
were asked differed across the tests. The equivalence test sought
to reject an effect specified by and upper and lower equivalence
bounds of ±9 mm (see Figure 2), and the ROPE procedure ex-
amined wether the 95% HDI fell within the region of practical
equivalence (Figure 3). The Bayes factor investigated whether
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the data was more in line with a null model or an alternative 
model specified based on expectations derived from previous 
studies. Researchers need to be aware of the precise question 
they want to ask from the data and the method they use to do 
answer their question. In order to draw informative inferences 
from the data, it is crucial that a statistical test is selected in which 
alternative hypotheses are defined that answer a question of in-
terest.

The Bayes factor tells us how much our belief in the null 
model versus the alternative model should change. It does not, 
however, directly tell us how likely the null hypothesis is, 
be-cause it is a relative measure. As can be seen in the 
equation above, to calculate the posterior odds of the two 
competing hypotheses, a researcher needs to combine the 
Bayes factor with prior probabilities for the two hypotheses. 
There is rarely an ob-jective answer to the question of prior 
odds, and researchers are free to hold different beliefs. If we 
feel that the two models are equally likely a priori, i.e. the prior 
odds are 1:1, the Bayes fac-tor would be equal to the posterior 
odds. If, on the other hand, we feel that the null hypothesis is 
four times more likely than the al-ternative hypothesis (before 
seeing any data from the study) and the Bayes factor is BF01 
= 2.95, we should believe that the null model is about 11.78 
(4 times 2.95, with a small difference due to rounding) more 
likely than the alternative after seeing the data. Since different 
researchers can have different beliefs about the prior odds of 
two hypotheses, Bayes factors are commonly reported without 
a reference to prior or posterior odds and the reader is 
assumed to update their own priors. If a researcher accepts 
the prior distributions for the parameters in the models 
compared in the Bayes factor, the Bayes factor contains the nec-
essary information to update their own prior odds and make an 
inference – but the Bayes factor is by itself not sufficient to reach 
a conclusion. Prior odds are a necessary part of the inferential 
method when using Bayes factors.
3. Discussion

There are good reasons wanting to test whether meaning-
ful effect sizes or theoretically predicted differences are absent
in data that have been collected to examine a hypothesis. In
recent years, statistical techniques such as equivalence testing,
Bayesian estimation, and Bayesian hypothesis tests have become
more widely available through open source software tools such
as R [1], jamovi [3], and JASP [2], and accessible introductions
with detailed examples [18,21,22]. These statistical tools allow
researchers to move beyond merely testing whether the null hy-
pothesis can be rejected in a null-hypothesis significance test.
These complementary statistical approaches invite researchers
to more carefully consider and specify which effect sizes they
predict when there is a true effect. A statistical evaluation of the

observed data should allow for informative conclusions about
null effects, and when planning a study and performing statis-
tical inferences researchers should more explicitly consider the
possibility that the null hypothesis could be true. This implies
that an informative study should be designed that allows one to
draw conclusions about both the presence and the absence of
a meaningful effect. We hope that the use of correct statisti-
cal approaches to evaluate null-results will prevent the common
mistake to interpret a p-value larger than the alpha level (e.g.,
p > .05) as the absence of an effect.

In the context of clinical trials, the repeated use of equiva-
lence and non-inferiority tests can have negative effects on the
conclusions derived from such research. That is, if sampling
and measurement error are large and the equivalence region is
rather wide, repeated studies comparing non-inferiority of dif-
ferent treatments or doses might favor treatments which are in-
effective or even harmful [41,42]. A phenomenon that has been
termed ‘bio-creep’. The prevalence of bio-creep is a matter of
ongoing research; [43] come to the conclusion, that it is not a
major cause of concern in practice (at least on average). Aware-
ness of the issue is nevertheless important and should even more
underline the need to carefully think about which effect sizes
are deemed meaningful, beyond simply comparing the results of
studies with each other.

3.1. Possible misconceptions

Probability is not intuitive, and every statistical technique
runs the risk of being misinterpreted. The techniques discussed
in this article have great potential to improve statistical infer-
ences, but it is important to prevent misinterpretations. When
performing a null-hypothesis significance test, a non-significant
result can not be used to conclude a meaningful effect is absent.
To conclude this, one has to specify and test against whichever
effect one defines to be ‘meaningful’. An equivalence test can
be used to statistically reject effects as large or larger than the
smallest effect size of interest, with a long-term error rate. It can
not be used to conclude the effect is exactly 0, or to reject the
presence of any effect. If we conclude statistical equivalence,
we can reject the presence of effect sizes more extreme than the
smallest effect size of interest with a known error rate, but we
can not conclude the true effect is exactly zero – there might be
a true but small effect. For this reason, conclusions based on
equivalence tests must always specify the equivalence bounds
that are used, and it is recommended to combine equivalence
tests with null-hypothesis significance tests (which can also help
to identify effects that are significant and equivalent, or practi-
cally insignificant differences). Thus, a statement such as ‘the
difference was statistically equivalent to zero’ is imprecise, and
a more precise interpretation is ‘we could reject effect sizes more
extreme than the equivalence bounds of −0.4 and 0.4’.
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When calculating the posterior distribution in Bayesian
statistics, a prior is combined with the observed data. Any state-
ments about the posterior distribution are not just based on the
data, but also conditional on the model. The model includes the
prior distributions which can be chosen rather freely. The prior
distribution may represent a researchers beliefs prior to observ-
ing the data, but can also be used to regularise estimates or incor-
porate information from previous studies. It is thus important to
explicitly state the model setup and provide a justification for the
choice of a prior distributions when using Bayesian estimation.
As with other measures of uncertainty such as confidence inter-
vals, Bayesian credibility intervals are not guaranteed to con-
tain true parameter values. The credible intervals contain values
which are deemed credible based on the prior and the observed
data with a specified posterior probability. Finally, when calcu-
lating Bayes factors, it is important to realize that they provide
relative evidence for two specified models. A Bayes factor can
indicate strong support for a null model relative to an alternative
model, but both models can be wrong. The Bayes factor gives
a relative indication of whether the data is more in line with the
null-model or the alternative model.

3.2. Differences between inferential frameworks

All statistical methods give rise to probabilistic inferences.
Rare events happen, and unlikely outcomes can be observed.
Probabilistic methods can never be used to know with certainty
that an effect is present or absent. Thus, none of the statistical
techniques presented in this paper are capable of proving the null.
After analyzing their data, researchers might be tempted to con-
clude ‘there was no effect’, but none of the statistical approaches
discussed here allow for such a conclusion. It is important to
understand the questions that the different statistical techniques
described in this article provide an answer to.

Equivalence tests are used to make dichotomous conclusions
to guide behavior, while controlling error rates in the long run.
The goal of such a test is to reject the presence of effects large
enough to matter, without being wrong too often. Any single
study might lead to an incorrect conclusion, but theories that
are correct should make predictions that are confirmed with ex-
pected error rates in lines of research. Although single studies
are never sufficient to draw strong conclusions in science, this
idea is especially central in frequentist statistics.

Bayesian statistics focus more strongly on quantifying be-
liefs or making statements about which values are deemed cred-
ible. In the case of Bayesian estimation, the focus lies on allo-
cating credibility to parameter values (such as effect sizes or dif-
ferences between groups), which can result in statements about
degrees of belief. In the case of Bayes factors, the focus lies on
quantifying the rational change in belief in a null-model or an

alternative model, which is also termed statistical evidence [44].
Although there are many different flavors of Bayesian statis-
tics, a strength of these approaches lies in drawing conclusions
that incorporate pre-existing information in statistical inferences.
Whether quantified beliefs or any other statistical inference cor-
responds with reality depends on how accurate model assump-
tions are. This is relevant for Bayesian models and the chosen
prior distributions as well as for model assumptions in frequen-
tist statistics.

In Bayesian estimation the prior can be used to shrink or
regularise parameter estimates. Through Bayes’ theorem, priors
provide an automatic way to implement shrinkage in a statistical
model. Especially in small samples and more complex models,
this avoids overfitting the data and can lead to better estimates
for out-of-sample inferences and predictions [45]. With more
data parameter estimates become more precise and the prior has
less influence on the posterior distribution, thus providing less
shrinkage as is desirable in most models. Finally, the Bayesian
approach to statistical modelling is very versatile and can be used
even in complex models such as hierarchical generalized mod-
els. Bayesian hierarchical or multilevel models are particularly
useful in clinical research, for example, when using clustered
samples or repeated measurements [45–47].

4. Conclusions
Null hypothesis significance testing has been critised be-

cause it is often misused and misunderstood [48]. Researchers
who only rely on null-hypothesis significance tests limit them-
selves in only asking the question whether the null-hypothesis
can be rejected. By adding statistical techniques such as equiv-
alence testing, Bayesian estimation, and Bayes factors to ones
repertoire, researchers can substantially improve the inference
they can draw from null-effects by asking more relevant ques-
tions. Being able to demonstrate the absence of effects is impor-
tant in all major approaches to philosophy of science [49]. When
researchers only publish scientific findings that statistically re-
ject null effects, the scientific literature is biased, which hinders
the accumulation of scientific knowledge [5,6]. By using statis-
tical approaches that can provide informative conclusions about
null effects, researchers might not be able to ‘prove the null’, but
they can substantially improve their statistical inferences about
null-effects.
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