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Background: Obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which refers to a 

large spectrum of hepatic lesions including fatty liver, nonalcoholic steatohepatitis (NASH) and cirrhosis. 

Different investigations showed or suggested that obesity and NAFLD are able to increase the risk of hepa-

totoxicity of different drugs. Some of these drugs could induce more frequently an acute hepatitis in obese 

individuals whereas others could worsen pre-existing NAFLD. 

Aim: The main objective of the present review was to collect the available information regarding the role of 

NAFLD as risk factor for drug-induced hepatotoxicity. For this purpose, we performed a data-mining anal-

ysis using different queries including drug-induced liver injury (or DILI), drug-induced hepatotoxicity, fatty 

liver, nonalcoholic fatty liver disease (or NAFLD), steatosis and obesity. The main data from the collected 

articles are reported in this review and when available, some pathophysiological hypotheses are put forward. 

Relevance for patients: Drugs that could pose a potential risk in obese patients include compounds be-

longing to different pharmacological classes such as acetaminophen, halothane, methotrexate, rosiglitazone, 

stavudine and tamoxifen. For some of these drugs, experimental investigations in obese rodents confirmed 

the clinical observations and unveiled different pathophysiological mechanisms which could explain why 

these pharmaceuticals are particularly hepatotoxic in obesity and NAFLD. Other drugs such as pentoxifyl-

line, phenobarbital and omeprazole might also pose a risk but more investigations are required to determine 

whether this risk is significant or not. Because obese people often take several drugs for the treatment of 

different obesity-related diseases such as type 2 diabetes, hyperlipidemia and coronary heart disease, it is 

urgent to identify the main pharmaceuticals that can cause acute hepatitis on a fatty liver background or 

induce NAFLD worsening. 
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1. Introduction 

It is currently estimated that more than 350 drugs of the 

modern pharmacopoeia can induce liver injury with different 

clinical presentations such as hepatic cytolysis and cholestasis 

[1,2]. Although severe drug-induced liver injury (DILI) is a 

rather rare event, it can require orthotopic liver transplantation, 

or lead to the death of the patient [2,3]. In addition, DILI can 

result in the withdrawal of drugs from the market, thus causing 

massive financial losses [4]. Thus, DILI is a major issue for 

public health and pharmaceutical companies.  

Besides drugs characteristics such as daily dose, chemical 

structure and liver metabolism, different predisposing factors 

inherent to the patients are known to enhance the risk of DILI 

[1,5]. Such factors include for instance polymorphisms in 

genes coding for xenobiotic-metabolizing enzymes (XMEs), 

underlying genetic mitochondrial diseases and pre-existing 

liver diseases such as alcoholic liver diseases and viral hepati-

tis [4,6]. Another liver disease that is increasingly recognized 

to favor DILI is nonalcoholic fatty liver disease (NAFLD), at 

least for some drugs such as acetaminophen, halothane, some 

antiretroviral drugs and methotrexate [7,8]. The main objective 

of the present review is to present the available information 

regarding the role of NAFLD as risk factor for drug-induced 

hepatotoxicity. For this purpose, we performed a PubMed 

search of literature published in the English language using the 

following terms: "drug-induced liver injury", "drug-induced 

hepatotoxicity", "fatty liver", "nonalcoholic fatty liver disease", 

"steatosis" and "obesity". This data-mining analysis was also 

completed by using Google Scholar®. Before presenting the 

collected data concerning the present topic, some major fea-

tures of NAFLD pathophysiology will be briefly recalled. 

Such information is important to understand why this frequent 

liver disease can enhance the risk of hepatotoxicity of some 

drugs.  

2. Pathophysiology of NAFLD 

NAFLD refers to a large spectrum of hepatic lesions linked 

to obesity including fatty liver, nonalcoholic steatohepatitis 

(NASH) and cirrhosis. NASH is characterized not only by 

fatty liver (also referred to as hepatic steatosis) but also by 

necroinflammation, some fibrosis and the presence of apoptot-

ic hepatocytes. Importantly, most obese patients present simple 

fatty liver but this lesion progresses in the long term to NASH 

in only 10 to 20% of patients. Several genetic polymorphisms 

could explain, at least in part, why fatty liver progresses to 

NASH only in a subset of obese patients [9,10].  

There is now strong evidence that insulin resistance (IR) in 

skeletal muscle and white adipose tissue (WAT) plays a key role 

in the pathogenesis of fatty liver linked to obesity [9,11]. IR in 

muscle is characterized by impaired glucose uptake and gly-

cogen synthesis, thus favoring glucose utilization for hepatic de 

novo lipogenesis (DNL), while IR in WAT favors triacyl-

glycerol (TAG) lipolysis. This uncontrolled lipolysis leads to 

the release in the circulation of large amounts of non-esterified 
 

 

fatty acids (NEFAs), which enter the liver in a concentra-

tion-dependent manner. In addition, NEFAs are synthesized 

more actively in liver because IR-associated hyperinsulinemia 

favors hepatic DNL. Indeed, high plasma insulin concentrations 

increase hepatic levels of sterol regulatory element- binding 

protein 1c (SREBP1c) and peroxisome proliferator-activated 

receptor  (PPAR), two transcription factors controlling the 

expression of key enzymes involved in NEFA and TAG syn-

thesis. When type 2 diabetes (T2D) occurs in obese individuals, 

hyperglycemia can also contributes to fatty liver by activating 

carbohydrate responsive element-binding protein (ChREBP), a 

transcription factor that enhances the expression of several 

glycolytic and lipogenic enzymes [9,12].  

The pathogenesis of the progression of fatty liver to NASH is 

complex and could involve different events including over-

production of reactive oxygen species (ROS), reduced ROS 

detoxification, mitochondrial dysfunction, endoplasmic re-

ticulum (ER) stress and increased release of pro-inflammatory 

and profibrogenic cytokines [9,11]. Some of these events could 

result from the direct toxicity of lipid derivatives (also referred 

to as lipotoxicity) on different metabolic pathways and hepa-

tocellular constituents [9,13]. Notably, ROS overproduction 

during NAFLD could mainly occur within mitochondria, in 

particular at the level of complexes I and III of the mitochon-

drial respiratory chain (MRC), and of some enzymes of the fatty 

acid oxidation (FAO) pathway [9,14,15]. Another significant 

source of ROS in fatty liver could be the cytochrome P450 2E1 

(CYP2E1), a XME located not only within the ER but also 

within mitochondria [16,17]. Thus, several mitochondrial en-

zymes are probably involved in ROS overproduction during 

NAFLD.  

Numerous studies carried out in rodents and humans have 

reported higher hepatic CYP2E1 expression and/or activity in 

obesity and NAFLD [18-21]. A role of enhanced CYP2E1 ac-

tivity in NAFLD pathogenesis is supported by different ex-

perimental investigations [18,22,23]. It is still unclear why 

CYP2E1 activity is increased in obesity and NAFLD, even 

though some studies suggested the role of disturbed in-

tra-hepatic insulin signalling and/or accumulation of some 

endogenous derivatives such as ketone bodies and saturated 

fatty acids [18,20,24]. The activity of other CYPs such as 

CYP2C9 and CYP2D6 has also been reported to be enhanced 

during obesity and NAFLD [7,25]. However, higher CYP2C9 

and CYP2D6 activity has most probably no significant role in 

NAFLD progression because these CYP isoforms do not pro-

duce ROS during their catalytic cycles, in contrast to CYP2E1 

[18]. Contrary to these CYPs, hepatic CYP3A4 expression and 

activity are lower during obesity and NAFLD [24-26]. This 

might disturb the pharmacologic and safety profiles of some of 

the numerous drugs metabolized by this enzyme [27].  

3. NAFLD and drug-induced hepatotoxicity  

There is growing evidence that NAFLD can increase the risk 

and/or the severity of liver injury induced by different drugs. 

Practitioners should bear this information in mind because  
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obese patients are consuming on average more drugs than 

non-obese individuals [7,28]. Indeed, obesity is often associated 

with different diseases such as T2D, hyperlipidemia, coronary 

heart disease and osteoarthritis that need to be treated. More-

over, obese patients can suffer from chronic diseases not nec-

essarily related to obesity such as viral infections (i.e. HIV and 

HCV) and cancers. Notably, treatment of the afore-mentioned 

diseases requires long-term drug administration, which can en-

hance the risk of adverse effects including hepatotoxicity [29,30].  

Obese patients are not only more likely to be exposed to 

different types of pharmaceuticals, but their diseased liver is 

also more vulnerable to some toxicological insults. Actually, 

hepatotoxicity in obese patients with NAFLD could occur as 

two distinct clinical settings [7]. For some drugs, an acute he-

patitis could happen more frequently and could be more severe 

than for healthy patients. For some other drugs, an aggravation 

of the pre-existing NAFLD could occur, with for instance an  

accelerated transition from fatty liver to NASH.  

3.1. Acute hepatitis in NAFLD  

Numerous drugs can induce acute hepatitis [31,32], which  

can be sometimes severe and require the patient’s hospitalization. 

Indeed, acute cytolysis can involve an important proportion of 

hepatocytes, thus leading to hepatic failure that requires or-

thotopic liver transplantation [33,34]. Notably, it has been re-

ported that subjects with drug-induced acute liver failure (ALF) 

were on average overweight but the body mass index (BMI) did 

not predict poor ALF outcome [33]. However, this study did not 

determine whether high BMI predicted ALF induced by some 

specific drugs. Actually, higher risk of acute hepatitis in obesity 

and NAFLD has been documented (or suspected) only with a 

few drugs, as listed in Table 1 and below. However, one can 

expect that this list will grow in the future because practitioners 

and researchers are increasingly aware about this issue.  

Theoretically, drug-induced acute hepatitis could occur 

more frequently in NAFLD because drugs are expected to be 

more cytotoxic in this new metabolic environment characterized 

by reduced ATP synthesis and higher ROS levels (Figure 1) 

[9,35,36]. In other words, for the same drug exposure, fatty liver 

will be more likely to be damaged as compared to normal liv-

er. During NAFLD, higher ROS levels can be the consequence 

of both ROS overproduction by different cellular components  
 

 

Table 1. Drugs and acute hepatitis in obesity and nonalcoholic fatty liver disease 

Drug(s) Pharmacological class Comments 

Acetamino-

phen (APAP) 

Analgesic and antipyretic Several experimental and clinical studies strongly suggest that acute APAP hepatotoxicity could be more frequent 

and more severe in obesity and NAFLD [8,49,50,54]. This is probably because these diseases are often associated 

with higher hepatic CYP2E1 activity, which generates greater levels of the toxic NAPQI metabolite. However, 

some obese individuals do not present high CYP2E1 activity and thus they may not be at risk for APAP-induced 

liver injury 

Amiodarone Antiarrhythmic and antianginal One clinical study reported that the frequency of amiodarone-induced hepatotoxicity did not appear to be greater 

in patients suffering from the metabolic syndrome [97]. Further investigations would be needed in order to con-

firm this observation 

Fosinopril Antihypertensive Only one study reported an increased risk of fasinopril-induced hepatitis in patients with NAFLD [94]. The exact 

mechanism of this greater risk is currently unknown. Further investigations would be needed to confirm this 

clinical observation 

Halothane and 

isoflurane 

Volatile anesthetics Several clinical studies strongly suggest that obese patients could be particularly at risk for halothane and isoflu-

rane-induced acute hepatotoxicity [18,59-63]. This is probably because obesity is often associated with higher 

hepatic CYP2E1 activity, which generates greater levels of the toxic acyl chloride metabolites. However, some 

obese individuals do not present high CYP2E1 activity and thus they may not be at risk for halothane and isoflu-

rane-induced liver injury 

Losartan Antihypertensive Only one study reported an increased risk of losartan-induced hepatitis in patients with NAFLD [94]. The exact 

mechanism of this greater risk is currently unknown. Further investigations would be needed to confirm this 

clinical observation 

Methotrexate anticancer and anti- 

inflammatory (anti-folate) 

Although several clinical studies suggest that methotrexate could induce acute hepatitis more frequently in obese 

patients, this drug is mostly suspected to aggravate NAFLD (see Table 2) 

Omeprazole Antiulcer (proton pump  

inhibitor) 

Only one study reported an increased risk of omeprazole-induced hepatitis in patients with NAFLD [94]. The 

exact mechanism of this greater risk is currently unknown. Further investigations would be needed to confirm 

this clinical observation 

Piperacillin/ 

tazobactam 

Antibiotics Only one study reported an increased risk of piperacillin/tazobactam-induced hepatitis in patients with NAFLD 

[94]. The exact mechanism of this greater risk is currently unknown. Further investigations would be needed to 

confirm this clinical observation 

Statins Hypolipidemic drugs Several clinical studies suggested that the risk of statin-induced hepatotoxicity is not higher in patients with 

NAFLD [95,96]. 

Telithromycin Antibiotic Only one study reported an increased risk of telithromycin-induced hepatitis in patients with NAFLD [94]. The 

exact mechanism of this greater risk is currently unknown. Further investigations would be needed to confirm 

this clinical observation 

Ticlopidine Antithrombotic (inhibitor 

 of platelet  aggregation) 
Only one study reported an increased risk of ticlopidine-induced hepatitis in patients with NAFLD [94]. The 

exact mechanism of this greater risk is currently unknown. Further investigations would be needed to confirm 

this clinical observation 
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(respiratory chain, CYP2E1 and peroxisomes) and reduced 

antioxidant defenses (glutathione, glutathione peroxidases, 

superoxide dismutases..) [9,37]. When NASH occurs, the 

pro-inflammatory environment with high tumor necrosis fac-

tor- (TNFproduction could also sensitize the liver to 

drug-induced acute cytotoxicity (Figure 1) [38,39]. In addition 

to these mechanisms, drug cytotoxicity could be favored by 

other events such as the production of higher levels of 

CYP-generated toxic metabolites, as discussed below for ac-

etaminophen and other pharmaceuticals. Finally, it must be 

pointed out that NAFLD might not increase the susceptibility 

of acute liver injury for all hepatotoxic drugs. This is most 

probably because the NAFLD-associated alteration of XME 

activities will not necessarily be associated with higher levels 

of the toxic compounds, which can be either the parent drugs 

and/or CYP-generated reactive metabolites. 

 

 
 

Figure 1. Mechanisms whereby NASH could increase the suscepti-

bility of drug-induced acute liver injury. NASH is associated with 

increased CYP2E1 expression and activity, reduced MRC activity and 

inflammation. These events lead to ROS overproduction, reduced ATP 

synthesis and increased production of pro-inflammatory cytokines 

such as TNFwhich can favor the occurrence of drug-induced acute 

liver injury. 
 

3.1.1. Acetaminophen 

In this section, we will briefly provide the most important 

information related to acetaminophen-induced liver injury in 

obesity and NAFLD, as we recently published a detailed re-

view on the topic [8].  

The painkiller acetaminophen (APAP), also known as para-

cetamol, is mainly metabolized in the liver into harmless glu-

curonide and sulfate conjugates. However, a small amount of 

APAP is oxidized to the highly toxic metabolite N-acetyl- 

p-benzoquinone imine (NAPQI) by several cytochromes P450, 

in particular CYP2E1 and CYP3A4. Hepatic CYP2E1 activity 

is increased not only in NAFLD, as previously mentioned, but 

also in other pathophysiological states including alcoholic liver 

disease, malnutrition and diabetes [18,40]. Thus, these diseases 

are expected to favor the generation of higher intrahepatic lev-

els of NAPQI (Figure 2). 

Although NAPQI is usually safely detoxified by hepatic 

reduced glutathione (GSH) when APAP is taken at the maxi-

mum recommended dose (i.e. 4 grams per day), high levels of 

NAPQI after an acute overdose consistently induce a fall in the 

GSH stores, thus promoting the covalent binding of free NAPQI 

to different cellular proteins, in particular at the mitochondrial 

level. This leads to profound oxidative phosphorylation (OXPHOS) 

impairment and ATP shortage, massive hepatocellular necrosis 

and ALF [8,41]. Activation of c-jun N-terminal kinase (JNK) 

could also be involved in APAP-induced liver injury, although 

some studies did not support such pathological role [24,42]. 
 

 
 

Figure 2. Increased hepatotoxicity induced by acetaminophen and 

halothane in obesity and NAFLD. Obesity and NAFLD are associated 

with higher hepatic cytochrome P450 2E1 (CYP2E1) activity, which is 

responsible for a greater biotransformation of acetaminophen and 

halothane to the highly reactive metabolites N-acetyl-p-benzoquinone 

imine and trifluoroacetyl chloride, respectively. These reactive me-

tabolites bind to glutathione (GSH) and key cellular targets, in partic-

ular at the mitochondrial level. These deleterious events induce mito-

chondrial dysfunction, reduced ATP synthesis and oxidative stress, 

thus triggering hepatic cytolysis. 

 

Besides the context of APAP overdose, it is noteworthy that 

therapeutic dose of APAP can induce mild to moderate hepatic 

cytolysis [21,43], and even fulminant hepatitis in a few pa-

tients [44,45]. However, it is noteworthy that no well-con-

trolled study has reported ALF in individuals treated with 

recommended doses of APAP. Hence, such rare therapeutic 

misadventures seem to occur preferentially in patients with 

predisposing factors such as malnutrition, co-medication with 

different drugs, alcoholic liver disease and NAFLD [8,44,46]. 

Some of these factors can not only enhance liver CYP2E1 ac-

tivity, as previously recalled, but they can also significantly 

reduce the intrahepatic stores of GSH [8,47,48].  

NAFLD could increase the risk of APAP-induced hepato-

toxicity either after an overdose or at therapeutic dosage. 

However, this risk might not concern all obese patients but 

only a subset of obese patients, as discussed below. Two large 

retrospective studies reported that NAFLD could be a risk 

factor for APAP-induced acute liver injury (ALI) after APAP 

overdose [49,50]. In these studies, patients with pre-existent  

NAFLD and hospitalized for APAP overdose had a 4- to 7-fold 

higher prevalence of ALI as compared to those without 

NAFLD [49,50]. Interestingly, these studies showed that the 

risk of severe ALI after APAP overdose was increased about 
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similarly with NAFLD and alcoholic liver disease [49,50]. A 

recent study reported that therapeutic doses of APAP signifi-

cantly increased plasma transaminases (i.e. ALT and AST) in 

morbidly obese patients but not in non-obese individuals [21]. 

Increased levels of transaminases were more than three times 

the reference values in some obese patients [21]. Moreover, it 

has been reported a case of acute fulminant hepatitis in an 

obese female treated by the maximal recommended dose of 

APAP for 10 days [44]. In contrast to these studies, the suscep-

tibility to APAP-induced ALI was reported to be similar, or 

even lower, in obese patients compared to non-obese individu-

als [51,52]. However, one of these studies showed that obese 

patients had significantly poorer outcomes after ALF [51]. 

Although all these clinical studies are very informative, it is 

noteworthy that some confounding factors were not taken into 

account, such as different psychological and genetic factors.  

Several studies in obese rodents showed that obesity and 

NAFLD are actually not sufficient by themselves to favor 

APAP-induced hepatotoxicity [8,53,54]. In contrast, our inves-

tigations in ob/ob and db/db obese mice clearly indicated that 

greater APAP hepatotoxicity was correlated with higher hepat-

ic CYP2E1 activity but not with the importance of fat accu-

mulation in liver [54]. Thus, taking into account these data and 

other studies, we recently proposed that the occurrence of 

APAP-induced hepatotoxicity in an obese individual will de-

pend on a subtle balance between metabolic factors that can be 

protective (i.e. lower absorption rate, higher volume of distri-

bution, reduced CYP3A4 activity and increased APAP glucu-

ronidation in liver) and others that can enhance the hepatic 

production of NAPQI (CYP2E1 induction) or lessen the de-

toxification rate of this toxic metabolite (lower GSH stores) [8].  

The high variability of hepatic CYP2E1 activity in obese 

individuals could also explain why all these subjects are ap-

parently not at risk for APAP-induced hepatotoxicity. Although 

different clinical investigations consistently showed that liver 

CYP2E1 activity is statistically greater in obesity and NAFLD, 

this activity is highly variable in obese patients [21,55-58]. In 

particular, whereas some obese patients present very high he-

patic CYP2E1 activity, others are in the range of non-obese 

individuals [21,55-58]. Further investigations would be needed 

to determine whether some simple biomarkers could predict 

high hepatic CYP2E1 activity in obese individuals. Indeed, 

such biomarkers might be interesting to identify the patients 

for whom APAP should be avoided, in particular in long-term 

treatment. Finally, variability in hepatic GSH levels might also 

exist in obese individuals. Indeed, GSH stores could be lower 

in patients with NASH, as compared to individuals with sim-

ple fatty liver, because NASH is consistently associated with 

higher oxidative stress [8,9]. Consequently, greater oxidative 

stress and lower liver GSH at baseline could increase the 

threshold of APAP toxicity in certain obese patients [8]. 

3.1.2. Halothane and isoflurane 

Halothane and isoflurane are two volatile halogenated an-

esthetics that have been reported to induce ALI more fre-

quently in obese individuals [18,59-63]. Moreover, obesity 

seems to be associated with poor prognosis during halothane 

and isoflurane-induced hepatitis [60,61]. However, it is note-

worthy that the above-mentioned investigations were based on 

relatively small number of patients and thus larger studies 

would be needed. Besides obesity, other factors such as female 

gender and repeated exposures to these halogenated anesthet-

ics could also enhance the risk and severity of hepatotoxicity 

[61,63,64]. In the most severe cases, halothane and isoflurane 

are able to induce massive liver necrosis and fulminant hepatic 

failure that can require orthotopic liver transplantation, or even 

lead to the death of the patients [59,61,63]. These anesthetics 

can also induce cholestasis and steatosis in some patients 

[31,59,61].  

Both halothane and isoflurane are predominantly oxidized 

in the liver by CYP2E1. Importantly, this CYP2E1-mediated 

oxidation generates electrophilic acyl chloride reactive metab-

olites able to covalently bind to a large array of cellular pro-

teins [18,65,66]. Regarding halothane, covalent binding of the 

trifluoroacetyl chloride metabolite to key cellular targets is 

deemed to be involved in liver injury by triggering an im-

mune-mediated reaction but also by inducing mitochondrial 

dysfunction, GSH depletion and oxidative stress [67-71]. Sim-

ilar mechanisms of hepatotoxicity have been proposed for 

isoflurane [65,72]. Thus, taking into account the key role of 

CYP2E1 in the pathogenesis of halogenated anesthetic-in-

duced hepatotoxicity, it is likely that the greater risk of liver 

injury in obese patients treated with halothane or isoflurane 

might be the consequence of the higher CYP2E1 activity 

commonly observed in obese patients (Figure 2) [7,18]. In 

keeping with this assumption, plasma levels of trifluoroacetic 

acid (i.e. a metabolite generated from trifluoroacetyl chloride) 

tended to be higher in morbidly obese patients compared to 

lean individuals [73]. Another study performed in morbidly 

obese individuals reported higher halothane biotransformation 

to the ionic fluoride metabolite [74]. Unfortunately, unlike the 

painkiller APAP, no investigations have been carried out in 

experimental NAFLD models in order to confirm that higher 

hepatic CYP2E1 activity is responsible for increased halothane 

hepatotoxicity in obesity. Finally, it should be pointed out that 

the higher risk of halothane and isoflurane-induced hepatotox-

icity might not concern all obese patients but only a subset of 

patients who present the highest hepatic CYP2E1 activity, as 

previously discussed for APAP.  

3.1.3. Methotrexate 

Methotrexate (MTX) is a folate antagonist used in the 

treatment of some malignancies and different autoimmune and 

inflammatory diseases such as psoriasis, psoriatic arthritis and 

rheumatoid arthritis. Supplementation with folic acid (or folinic 

acid) is recommended in treated patients in order to reduce the 

risk of MTX-induced adverse effects including hepatotoxicity 

[75,76]. Notably, MTX-induced liver toxicity is mostly associ-

ated with its long-term use for the treatment of inflammatory 

diseases [77,78]. Although some cases of acute hepatitis with 

marked increase in plasma transaminases and hepatocellular 

necrosis have been reported in a few patients treated with high 
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doses of intravenous MTX [79,80], this drug mostly induces 

chronic forms of liver lesion such as steatosis, steatohepatitis, 

fibrosis and even cirrhosis [31,78,80,81-83]. Psoriatic patients 

appear to have a higher risk for MTX-induced liver fibrosis. 

Indeed, several studies reported the presence of hepatic fibrosis 

in at least 20% of the treated psoriatic patients, although a ma-

jority of these cases corresponded to mild fibrosis [77,84,85]. 

Different studies reported that obesity and T2D could in-

crease the risk of MTX-induced hepatotoxicity as assessed by 

increased plasma transaminases, or the presence of hepatic 

alterations such as steatohepatitis, fibrosis or cirrhosis 

[81,85,86-90]. However, when considering the investigations 

reporting only plasma transaminases [87,90], it is unclear 

whether MTX-induced transaminase elevation was actually 

linked to the occurrence of an acute hepatitis or a chronic form 

of liver injury such as steatohepatitis, or alternatively, to the 

worsening of pre-existing NAFLD. Because MTX-induced 

acute hepatitis seems to be an uncommon adverse event, it is 

likely that most cases of transaminase elevation during MTX 

treatment in obese and diabetic patients might be linked to the 

occurrence of a chronic form of liver injury, or to an aggrava-

tion of NAFLD. Hence, the issue of MTX-induced aggravation 

of pre-existing NAFLD and its possible pathophysiology will 

be discussed below. Finally, it is noteworthy that other factors 

seem to increase the risk of MTX-induced hepatotoxicity in-

cluding cumulative dose and duration of MTX therapy, lack of 

folate supplementation, hyperlipidemia, alcohol abuse and 

genetic factors [87,90-93].   

3.1.4. Other drugs 

In a 6-year prospective study carried out in 74 patients with 

NAFLD and 174 with HCV-related chronic hepatitis, it has 

been found that NAFLD was an independent risk of DILI with 

an odds ratio of almost 4 [94]. In this study, ALI was observed 

in obese patients treated with fosinopril and losartan (antihy-

pertensive agents), piperacillin/tazobactam and telithromycin 

(antibiotics), omeprazole (proton pump inhibitor) and 

ticlopidine (inhibitor of platelet aggregation) [94]. Although 

this report is interesting, prospective studies on larger popula-

tion are needed in order to determine whether NAFLD is a 

bona fide independent risk of hepatotoxicity induced by these 

drugs.  

Other investigations suggested that some drugs might not 

induce more frequently acute hepatitis in obese patients with 

NAFLD. These drugs include statins [95,96] and amiodarone 

[97]. However, these investigations were retrospective and 

further studies are warranted to confirm the innocuousness of 

these drugs in obese patients. Nonetheless, these reports suggest 

that obesity and NAFLD might not increase the risk of acute 

hepatitis for all hepatotoxic drugs, as previously mentioned.  

3.2. Aggravation of pre-existing NAFLD  

Clinical and experimental investigations indicate that chro-

nic administration of some drugs can aggravate pre-existing 

NAFLD. Actually, the fact that NAFLD can be aggravated by 

long-term exposure to some xenobiotics is not restricted to 

drugs. For instance, different experimental and clinical studies 

have consistently shown that chronic alcohol abuse is particu-

larly harmful for the steatotic liver and can severely worsen 

NAFLD [98-103].      

As previously mentioned, NAFLD refers to a large spectrum 

of hepatic lesions including fatty liver, NASH and cirrhosis. 

Hence, aggravation of NAFLD can be secondary to an exac-

erbation of the intrahepatic accumulation of fat and/or a faster 

progression of the disease, for instance through a quicker tran-

sition from fatty liver to NASH. Conceptually, xenobiotics 

could exacerbate hepatic fat accretion by increasing DNL, lim-

iting very low-density lipoprotein (VLDL) excretion and/or 

reducing mitochondrial FAO (Figure 3) [7,104]. Furthermore, a 

more rapid transition towards NASH could primarily involve 

ROS overproduction by the dysfunctional MRC, ER stress, 

lower antioxidant defences and higher expression of 

pro-inflammatory cytokines such as TNF(Figure 3) [6,7]. In-

terestingly, almost all the above-mentioned events seem to be 

involved in NAFLD aggravation induced by chronic ethanol 

intoxication [101-103].  
 

 
 

 

Figure 3. Mechanisms whereby some drugs could aggravate fatty liver 

and promote its progression to NASH in obese patients. Drug-induced 

worsening of fatty liver could be secondary to reduced VLDL secre-

tion, increased lipogenesis and impaired mitochondrial FAO. The 

progression of fatty liver to NASH could be triggered by lower ATP 

production, higher mitochondrial ROS production, ER stress and 

inflammation. Notably, drug-induced inhibition of MRC could be a 

common mechanism leading to impaired FAO, reduced ATP levels and 

higher ROS production. 
 

Actually, impairment of the MRC activity could be a central 

mechanism whereby some xenobiotics including drugs are able 

to worsen NAFLD (Figure 3) [6,7]. Indeed, MRC inhibition 

could not only contribute to the aggravation of fatty liver via the 

secondary impairment of mitochondrial FAO but also to the 

occurrence of necrosis secondary to ATP deficiency. In addi-

tion, MRC impairment is leading to higher mitochondrial ROS 

production, which could favor hepatic fibrosis [105,106]. In-

terestingly, several drugs discussed in the following sections 

were reported to inhibit the MRC activity. Table 2 summarizes 

the main data collected for these drugs. 
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Table 2. Drugs and aggravation of pre-existing NAFLD 

Drug(s) Pharmacological class Comments 

Acetaminophen 

(APAP) 

Analgesic and antipyretic Some experimental studies in rodents suggest that chronic treatment with therapeutic doses of APAP 

could have deleterious effects on liver function and carbohydrate homeostasis [113,115,116]. Although it 

is currently unclear whether fatty liver might be particularly affected by long-term APAP treatment, 

further investigations are warranted in order to determine whether APAP can be safely prescribed for 

prolonged periods in obese people 

Corticosteroids Anti-inflammatory Experimental studies showed that corticosteroids aggravated fatty liver in obese rodents [121,122]. 

Some experimental data also suggested that these drugs could also trigger NASH [121]. Hence, cortico-

steroids should be used with caution in obese patients 

Irinotecan Anticancer Clinical studies reported that irinotecan administration before liver resection could induce steatohepatitis 

more frequently in obese individuals [126,127] 

Methotrexate 

(MTX) 

anticancer and anti-inflammatory 

(anti-folate) 

Several clinical investigations suggested that MTX might aggravate NAFLD, in particular hepatic fibro-

sis [81,129,130] 

Pentoxifylline 

(PTX) 

Hemorrheologic agent with an-

ti-TNF properties 

PTX might aggravate NAFLD in a few patients [166,167]. Investigations in obese mice suggested that 

PTX-induced worsening of fatty liver could be secondary to hyperglycemia and higher hepatic DNL [171] 

Phenobarbital Antiepileptic Experimental investigations showed that phenobarbital exacerbated hepatic lipid deposition in obese rats 

[180]. No data are available for obese patients 

Raloxifene Anti-osteoporotic  

(selective estrogen  

receptor modulator) 

A case report described a case of NASH aggravation in a female patient treated with raloxifene [215]. 

Further investigations would be needed in order to determine whether raloxifene could pose a potential 

risk in obese patients 

Rosiglitazone Antidiabetic (PPAR  agonist) Worsening of necroinflammation, perisinusoidal fibrosis and steatosis was observed in some obese 

patients treated with rosiglitazone [195,197,198]. Experimental investigations performed in different 

murine models of obesity and T2D confirmed that rosiglitazone was able to exacerbate hepatic steatosis 

and liver TAG accumulation [200-205]. Some experimental data also suggested that necroinflammation 

could also be worsened by rosiglitazone [200,202] 

Stavudine 

(d4T) 

Antiretroviral (NRTI) Some clinical investigations suggested that d4T could induce fatty liver disease or worsen NAFLD in 

some patients, although further investigations would be needed to ascertain NAFLD aggravation 

[119,154-156]. Other studies also suggested that the risk of d4T-induced lactic acidosis could be higher 

in overweight or obese female patients [159-162]. Other NRTIs such as didanosine (ddI) might also 

aggravate NAFLD in obese patients [156]. 

Tamoxifen Anticancer (selective  

estrogen receptor modulator) 

Some clinical studies showed that obesity enhanced the risk of tamoxifen-induced steatohepatitis 

[211,213]. However, further investigations are needed in order to determine whether tamoxifen is able to 

worsen pre-existing NAFLD in obese patients 

Tetracycline Antibiotic Experimental investigations showed that tetracycline exacerbated hepatic TAG deposition and triggered 

steatohepatitis in obese mice [231]. However, this interesting observation is not clinically relevant be-

cause tetracycline is no longer prescribed in patients 

 

 

3.2.1. Acetaminophen (APAP) 

As previously mentioned, therapeutic doses of APAP can 

induce liver injury in some patients. About one third of treated 

patients could have a significant increase in their plasma 

transaminases after 1 or 2 weeks of APAP treatment [43,107]. 

Although extremely rare, fulminant hepatitis have been re-

ported in patients after several days of APAP treatment at 

recommended dosage [44,45]. Moreover, long-term intake of 

APAP has been reported to induce chronic liver injury in a few 

treated patients, such as cirrhosis and granulomatous hepatitis 

[31,108]. Interestingly, some data suggest that chronic APAP 

ingestion could significantly reduce GSH stores, at least in 

some treated patients [109,110]. Lastly, therapeutic doses of 

APAP could also have detrimental effects on the kidney and the 

cardiovascular system [111,112]. Thus, therapeutic doses of 

APAP might be at risk for some individuals, in particular during 

chronic treatment. Accordingly, several investigations in ro-

dents showed that long-term treatment with therapeutic doses of 

APAP was able to induce oxidative stress and cellular injury in 

different tissues [113-115]. Interestingly, a single low dose of 

APAP in mice induced reversible mitochondrial dysfunction 

and steatosis in liver, but this study did not determine the effects 

of repeated administration of such low APAP dose [116]. 

There is currently no information as to whether NAFLD 

might be aggravated in some patients by therapeutic doses of 

APAP. However, recent experimental studies performed in our 

laboratory suggested that APAP administration might not be 

safe in NAFLD (Begriche et al., manuscript in preparation). 

Indeed, a 1-month treatment with therapeutic doses of APAP 

significantly enhanced plasma aspartate aminotransferase 

(AST) activity by 45% in mice fed a high-fat diet (HFD), 

whereas this increase was only 19% in mice fed a normal diet. 

Furthermore, HFD obese mice treated by APAP presented a 

higher hepatic mRNA expression of several proteins responsive 

to cellular stress including γ-glutamylcysteine synthetase 

(γ-GCS), tribbles pseudokinase 3 (Trib3) and X-box binding 

protein 1 (Xbp1). However, chronic APAP treatment concomi-

tantly induced in obese mice a significant reduction of liver 

TAG levels associated with lower plasma insulin and reduced 

liver expression of different genes involved in DNL including 
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SREBP1c, stearoyl-coenzyme A desaturase 1 (SCD1) and 

glycerol-3-phosphate acyltransferase (GPAT). In contrast to 

insulin, blood glucose was not significantly changed by APAP. 

Other studies in mice reported the effect of chronic treatment 

with therapeutic doses of APAP on glucose homeostasis and 

insulin resistance. In two studies from the same group, APAP 

was reported to alleviate impaired glucose intolerance and 

hyperinsulinemia in HFD obese mice [117,118]. However, 

long-term administration of APAP induced glucose intolerance 

and hepatic insulin resistance in mice fed a chow diet [115]. 

Furthermore, APAP decreased serum insulin and -cell relative 

volume in these mice [115]. Clearly, further investigations are 

warranted in order to determine whether APAP can be safely 

prescribed for chronic treatment, in particular in patients suf-

fering from obesity and related metabolic disorders.  

3.2.2. Corticosteroids 

These drugs are used in numerous diseases for their anti- 

inflammatory and anti-allergic effects. However, one of the 

main adverse effects of this drug class is the occurrence of 

metabolic and endocrine disturbances and in particular obesity, 

hyperlipidemia, steatosis, steatohepatitis, IR and diabetes 

[6,7,119,120]. In two independent studies carried out in HFD 

obese rodents, long-term treatment with corticosteroids (corti-

costerone or dexamethasone) significantly worsened hepatic 

steatosis [121,122]. In one of these studies, plasma ALT, total 

bilirubin and liver collagen content were significantly enhanced 

in HFD obese rats treated with corticosterone whereas no such 

disturbances were observed in untreated HFD rats [121]. Thus, 

in the context of obesity, corticosteroids might not only aggra-

vate fatty liver but might also trigger NASH. Interestingly, 

corticosteroids are able to disturb mitochondrial FAO, MRC 

activity and oxidative phosphorylation in liver [123-125]. 

However, further investigations would be required to determine 

whether mitochondrial dysfunction is involved in NAFLD 

worsening in corticosteroid-treated rodents [121,122]. 

3.2.3. Irinotecan 

This topoisomerase 1 inhibitor, also known as CPT-11, is 

mainly used for the treatment of advanced colorectal cancer. 

Irinotecan is also used before resection of hepatic colorectal 

metastases. Two independent clinical studies reported that iri-

notecan administration before liver resection could induce ste-

atohepatitis (sometimes severe) in treated patients and that the 

risk of liver injury appeared to be greater in obese individuals 

[126,127]. Although the reason of this increased susceptibility 

is currently unknown, recent experimental investigations in 

mice showed that obesity was associated with higher plasma 

levels of the toxic irinotecan metabolite, SN-38 [128].   

3.2.4. Methotrexate 

As previously mentioned, it is likely that most cases of 

transaminase elevation in obese and diabetic patients treated 

with MTX could be linked to the occurrence of a chronic form 

of liver injury such as steatohepatitis, or to an aggravation of 

pre-existing NAFLD. Although this issue is still unclear, an 

aggravation of NAFLD is supported by a clinical study carried 

out in a small group (n=20) of obese and/or diabetic patients for 

whom serial liver biopsies were performed [81]. In this study, 

fibrosis was aggravated in three-quarter of the treated patients, 

whereas steatosis and necroinflammation were worsened in the 

remaining individuals [81]. Thus, although these data indicated 

that all histological components of NAFLD could be worsened 

by MTX, it seems that this drug could more frequently aggra-

vate hepatic fibrosis. It is noteworthy that other studies using 

non-invasive methods such as ultrasound elastography also 

suggested that MTX might aggravate liver fibrosis in obese 

patients [129,130]. However, a serial assessment of hepatic 

fibrosis was not performed in these studies. Interestingly, recent 

investigations in a rat model of steatohepatitis induced by a 

methionine choline-deficient (MCD) diet showed that a single 

injection of MTX was able to induce liver fibrosis in the MCD 

rats whereas no fibrosis was observed in rats fed with a control 

diet [131,132]. Although these data are interesting, it should be 

underlined that the MCD model of NASH does not reflect the 

metabolic context of obesity because the MCD diet induces a 

significant loss of body weight and lower glycemia [9,133].  

Although the exact mechanism whereby MTX could ag-

gravate NASH is still unknown, one attractive hypothesis is 

mitochondrial dysfunction (Figure 3). Indeed, MTX-induced 

mitochondrial dysfunction has been shown in different exper-

imental models [104,134,135]. In particular, our recent inves-

tigations in isolated mouse liver mitochondria showed that 

relatively low concentrations of MTX (~40-50 M) were able 

to inhibit oxygen consumption with glutamate/malate or pal-

mitoyl-L-carnitine/malate as respiratory substrates [104]. These 

mitochondrial effects might explain why MTX is able to induce 

hepatic steatosis, necrosis and fibrosis, as already discussed.  

A previous study in patients with MTX-induced liver fibrosis 

reported a hepatic overexpression of different genes encoding 

complement components including C3, C5 and C8a [136]. 

Interestingly, activation of the complement system could play a 

role in the progression of NAFLD [137,138] and in the occur-

rence of fibrosis in other liver diseases [139,140]. Thus, MTX 

might aggravate NAFLD and especially fibrosis by further 

activating the complement system in liver. Although MTX- 

induced mitochondrial dysfunction and complement activation 

might be attractive hypotheses, it is clear that further investi-

gations are needed to decipher the mechanism(s) whereby MTX 

is able to worsen NAFLD in obese patients.  

3.2.5. Nucleoside reverse transcriptase inhibitors 

The nucleoside reverse transcriptase inhibitors (NRTIs) are 

efficient drugs used for the treatment of HIV infection. NRTIs 

include abacavir (ABC), didanosine (ddI), lamivudine (3TC), 

stavudine (d4T) and zidovudine (AZT). These drugs can cause 

various adverse effects, sometimes severe and fatal, including 

lactic acidosis, bone marrow suppression, myopathy, pancrea-

titis and liver injury [141-143]. NRTI-induced hepatotoxicity 
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includes hepatic cytolysis, microvesicular and macrovacuolar 

steatosis, steatohepatitis and cirrhosis [104,141-143]. This he-

patic toxicity is particularly observed with d4T, ddI and AZT 

[31,143]. These latter NRTIs can also induce lipoatrophy, which 

is characterized by a loss of WAT in different body areas 

[141,144,145]. Notably, NRTI-induced lipoatrophy could 

promote secondary IR in some tissues including WAT and 

muscle [146,147]. It is acknowledged that most NRTI-induced 

adverse effects are caused by depletion of mitochondrial DNA 

(mtDNA), a small genome encoding for 13 proteins mandatory 

for MRC activity and OXPHOS [6,141,143]. Importantly, 

mtDNA depletion-induced MRC alteration in turn leads to an 

impairment of mitochondrial FAO and tricarboxylic acid (TCA) 

cycle, responsible for hepatic steatosis and lactic acidosis, re-

spectively [6,141,148-150]. However, it is noteworthy that 

NRTI-induced toxic effects not related to mtDNA depletion 

were also reported in different experimental investigations 

[141,151-153]. 

Some NRTIs, in particular d4T and ddI, are suspected to 

induce fatty liver disease or worsen NAFLD in treated patients 

[119,154-156]. Several different mechanisms, which are not 

mutually exclusive, might be involved in these deleterious 

effects. First, NRTI-induced impairment of hepatic MRC ac-

tivity could be involved, as previously discussed (Figure 3). 

Second, NRTIs could also induce hepatic lipid deposition by 

inducing ER stress and inhibiting autophagy activity [157,158]. 

Third, NRTI could promote fatty liver by way of lipoatro-

phy-related IR [154,155], in a similar way than for obesi-

ty-induced IR [9,11].  

It is noteworthy that several studies suggested that the risk of 

d4T-induced lactic acidosis could be higher in overweight or 

obese female patients [159-162]. Moreover, a high BMI might 

increase the risk of fatal lactic acidosis [163]. Although the 

exact mechanisms underlying this higher risk are currently 

unknown, it is conceivable that d4T treatment might have sig-

nificantly exacerbated NAFLD-associated mitochondrial dys-

function in these obese individuals, thus triggering severe TCA 

cycle deficiency and lactic acidosis. Unfortunately, these in-

vestigations did not determine whether d4T also worsen fatty 

liver or NASH in these patients.  

3.2.6. Pentoxifylline 

The methylxanthine derivative pentoxifylline (PTX) is a 

nonselective phosphodiesterase inhibitor commonly prescribed 

for peripheral vascular disorders and intermittent claudication 

by improving blood flow and circulation. Because PTX is also 

an inhibitor of TNF synthesis, it has also been tested in dif-

ferent diseased states involving this pro-inflammatory cytokine 

such as alcoholic hepatitis and NASH. However, recent studies 

suggested that PTX could not be efficient for the treatment of 

alcoholic hepatitis [164,165]. Regarding NASH, although some 

studies reported a beneficial effect of PTX treatment [166-168], 

others did not show any efficacy of this drug compared to pla-

cebo [169,170]. Moreover, steatosis, inflammation and fibrosis 

worsened in a few patients treated with PTX, although it was 

unclear whether this was related to the treatment or other fac-

tors [166,167].  

Investigations carried out in wild-type (i.e. lean) mice and 

obese and diabetic ob/ob mice treated for 3 weeks with PTX 

showed that this drug aggravated fatty liver in ob/ob mice, 

whereas liver lipid accumulation was not observed in PTX- 

treated lean mice [171]. In addition, PTX further enhanced 

plasma ALT activity in obese mice, thus reflecting aggravation 

of hepatic cytolysis [171]. Another study showed that a 2-week 

treatment with PTX significantly increased hepatic TAG levels 

in mice fed a MCD diet [172]. Investigations in ob/ob mice 

also suggested that PTX could promote DNL in liver through a 

ChREBP-dependent pathway, possibly activated by 

PTX-induced hyperglycemia [171]. Moreover, additional in-

vestigations suggested that this hyperglycemia could be sec-

ondary to higher intestinal glucose absorption due to increased 

jejunal expression of the glucose transporter GLUT2 [171]. 

Interestingly, the methylxanthine caffeine is suspected to ex-

aggerate post-prandial hyperglycemia in patients with T2D 

[173,174]. Altogether, these data suggest that long-term treat-

ment with PTX might aggravate NAFLD in some patients, in 

particular in those suffering from T2D, by increasing 

post-prandial glycemia and hepatic DNL [171]. 

3.2.7. Phenobarbital 

Phenobarbital is a barbiturate derivative used for the treat-

ment of epilepsy. Notably, phenobarbital is a potent inducer of 

different hepatic CYPs including CYP2B, CYP2C and CYP3A, 

in particular by activating the nuclear constitutive androstane 

receptor (CAR) [175,176]. Some studies also showed that 

phenobarbital is able to enhance CYP2E1 activity [177-179], 

but the mechanism of such induction is still unknown. Exper-

imental investigations showed that phenobarbital exacerbated 

hepatic lipid deposition in HFD obese rats, whereas this an-

tiepileptic drug did not induce lipid accumulation in lean rats 

[180]. Although the mechanism whereby phenobarbital aggra-

vated hepatic steatosis was not determined in this study, some 

data might suggest a role of CYP2E1 induction. Indeed, inves-

tigations in different murine models support the notion that 

CYP2E1 favors hepatic lipogenesis and lipid deposition 

[23,181-184]. Thus, phenobarbital-induced aggravation of 

fatty liver in HFD obese rats [180] might have been induced, at 

least in part, by the exacerbation of NAFLD-related CYP2E1 

induction. Alternatively, phenobarbital might have exacerbated 

fatty liver by activating CAR [6]. However, the role of CAR in 

drug-induced steatosis is still unclear and could depend on the 

duration of CAR activation and/or the nature of the activating 

molecule [6]. 

3.2.8. Rosiglitazone 

This thiazolidinedione (TZD) derivative is a PPAR agonist 

used for the treatment of T2D. Indeed, TZDs enhance insulin 

http://dx.doi.org/10.18053/jctres.03.2017S1.006


Massart and Begriche et al. | Journal of Clinical and Translational Research 2017; 3(S1): 212-232                 221 

 

Distributed under creative commons license 4.0        DOI: http://dx.doi.org/10.18053/jctres.03.2017S1.006 

sensitivity by different mechanisms including reduction of 

circulating free fatty acids, increased adiponectin secretion and 

stimulation of FAO and energy expenditure [185,186]. Rosi-

glitazone belongs to the same pharmacological class as 

troglitazone, which has been withdrawn from the market in 

2000 because of the occurrence of several cases of severe 

(sometimes fatal) liver injury [187,188]. Importantly, several 

studies suggested that mitochondrial dysfunction could play a 

major role in troglitazone-induced hepatotoxicity [189,190].  

Although rosiglitazone is safer than troglitazone, several 

cases of hepatotoxicity, sometimes severe, were reported in 

treated patients [31,191,192]. Interestingly, rosiglitazone also 

induces mitochondrial dysfunction in particular by inhibiting 

the activity of different MRC complexes [190,193]. However, 

the extent of rosiglitazone-induced inhibition of MRC com-

plexes is less compared to troglitazone [190,193]. Pioglitazone, 

another antidiabetic PPAR agonist, presents a hepatotoxicity 

profile and an ability to impair mitochondrial dysfunction that 

seems about similar to rosiglitazone [31,190]. Besides hepato-

toxicity, a major concern with the use of rosiglitazone is its 

possible association with increased risk of cardiac diseases 

including congestive heart failure [186]. Rosiglitazone-induced 

cardiotoxicity could also involve mitochondrial dysfunction 

[186]. 

Because of their beneficial effects on insulin sensitivity, 

rosiglitazone and pioglitazone have been tested in the treatment 

of NASH [186,194]. Although pioglitazone showed beneficial 

effects on NASH progression, rosiglitazone efficiency was less 

consistent, especially during long-term treatment [194-196]. In 

addition, worsening of necroinflammation, perisinusoidal fi-

brosis and steatosis was observed in some patients [195,197]. In 

another study, rosiglitazone treatment was interrupted in an 

obese woman with severe steatosis because of a significant rise 

in serum ALT and AST [198]. Interestingly, increased hepatic 

expression of different pro-inflammatory genes (i.e. TLR4, IL-8 

and CCL2) was reported in patients treated with rosiglitazone 

[199]. 

Several experimental investigations carried out in different 

murine models of obesity and T2D consistently reported that 

rosiglitazone was able to exacerbate hepatic steatosis and liver 

TAG accumulation [200-205]. Interestingly, two of these stud-

ies reported that aggravation of steatosis was associated with 

increased circulating ALT levels, thus suggesting that necroin-

flammation could also be worsened by rosiglitazone [200,202]. 

Although the exact mechanism(s) whereby rosiglitazone is able 

to aggravate liver steatosis in obese and diabetic mice is still 

unknown, some data suggest an exacerbation of hepatic DNL 

[200], possibly mediated by the high expression of PPAR 

already present in the obese liver [202,205]. Further impairment 

of MRC complex I activity and exacerbation of oxidative stress 

might have contributed to the possible worsening of hepatic 

necroinflammation in rosiglitazone-treated obese mice [202]. 

3.2.9. Tamoxifen  

Tamoxifen is a selective estrogen receptor modulator used 

for the treatment of estrogen receptor positive breast cancer. 

Tamoxifen can induce different types of chronic liver lesion 

including steatosis, steatohepatitis, fibrosis, cirrhosis and hep-

atocellular carcinoma [31,78,83,206]. Whereas steatosis can be 

detected in at least one third of the treated patients [207,208], 

tamoxifen-induced steatohepatitis and cirrhosis seems to be 

uncommon [209-211]. Similarly, tamoxifen-induced acute 

hepatitis seems to be rare [31].   

Several studies reported that obesity increased the risk of 

tamoxifen hepatotoxicity as assessed by increased plasma 

transaminases, or the presence of hepatic histologic alterations 

[211-213]. Two of these studies showed that obesity more spe-

cifically enhanced the risk of tamoxifen-induced steatohepatitis 

[211,213]. Interestingly, in a study reporting three cases of 

tamoxifen-induced steatohepatitis, all patients were over-

weight, or obese [214]. However, it is noteworthy that one of 

the above-cited study suggested that tamoxifen did not worsen 

pre-existing NASH in a small subgroup of patients [211]. 

Hence, further investigations in larger series of obese patients 

undergoing serial liver biopsies would be needed in order to 

confirm these data. This could be clinically relevant because a 

previous study reported a case of NASH aggravation in a fe-

male patient treated with raloxifene [215], a selective estrogen 

receptor modulator used to treat osteoporosis.   

The mechanism whereby tamoxifen could induce steato-

hepatitis more frequently in obese individuals is currently un-

known, although mitochondrial dysfunction could be involved 

(Figure 3). Indeed, tamoxifen is able to impair MRC activity in 

isolated rodent liver mitochondria via a direct inhibition of 

several MRC complexes [104,216-218]. One of these studies 

also showed that chronic tamoxifen treatment in mice induced 

mtDNA depletion and impairment of different MRC complexes 

in liver [216]. Because mtDNA encodes 13 MRC polypeptides 

[143], mtDNA depletion could also contribute to the impair-

ment of MRC activity observed in mice treated by tamoxifen, in 

addition to its direct inhibitory effect on the MRC [216]. In-

terestingly, studies carried out in rodents showed that tamoxifen 

induced oxidative stress in liver, including at the mitochondrial 

level [219-221]. However, a single dose of tamoxifen was ad-

ministered in these studies and further investigations with 

chronic tamoxifen treatment are required.  

As previously mentioned, numerous investigations pointed 

to the occurrence of mitochondrial dysfunction in NAFLD. In 

particular, lower mitochondrial respiration with MRC sub-

strates and reduced activity of MRC complexes have consist-

ently been found in different rodent models of NAFLD, in-

cluding in rodents with simple fatty liver or mild NASH 

[9,222]. Hence, it is tempting to speculate that tamoxifen might 

exacerbate MRC impairment in obese patients and trigger ste-

atohepatitis in individuals with the more severe mitochondrial 

dysfunction and the highest ROS overproduction.   

3.2.10. Tetracycline  
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Tetracycline is a broad-spectrum antibiotic prescribed to 

treat different bacterial infections. However, the clinical use of 

tetracycline declined because the high doses required to treat 

infections induced numerous adverse effects. In particular, 

tetracycline has been responsible for several severe cases of 

hepatotoxicity characterized by microvesicular steatosis and 

fulminant liver failure [143,223]. Experimental investigations 

suggested that tetracycline-induced inhibition of mitochondrial 

FAO could be an important mechanism leading to hepatic ste-

atosis [224-226]. A recent study suggested that one mechanism 

of tetracycline-induced impairment of mitochondrial FAO 

could be secondary to the oxidative inhibition of long-chain 

acyl-CoA dehydrogenase, a key enzyme of the mitochondrial 

FAO pathway [227]. Other investigations showed that tetracy-

cline was able to inhibit mitochondrial protein synthesis 

[228-230]. The latter effect could worsen mitochondrial dys-

function during long-term tetracycline treatment because all the 

mtDNA-encoded proteins are mandatory for MRC activity and 

OXPHOS [143], as previously mentioned. 

A previous study carried out in mice showed that tetracycline 

aggravated NAFLD in HFD obese mice [231]. Interestingly, 

tetracycline not only exacerbated hepatic TAG deposition but 

also induced steatohepatitis in obese mice, whereas no sign of 

tetracycline-induced hepatotoxicity was observed in lean mice 

[231]. Liver expression of TNF and IL1 (two pro-infl-

ammatory cytokines) and that of α-smooth muscle actin 

(α-SMA, a marker of fibrosis) were enhanced only in obese 

mice treated by tetracycline [231]. Unfortunately, the mecha-

nism whereby tetracycline worsened NAFLD in obese mice 

was not assessed in this study. Further investigations will be 

needed in order to determine whether tetracycline-induced 

mitochondrial dysfunction and oxidative stress could be in-

volved. It will also be interesting to assess the hepatic effects of 

other tetracycline derivatives in obese animals. Indeed, deriva-

tives such as doxycycline, minocycline and rolitetracycline are 

also able to induce mitochondrial dysfunction [230,232,233]. 

Finally, it is noteworthy that tetracycline derivatives present 

other metabolic effects that could promote hepatic lipid accu-

mulation including impairment of TAG secretion and stimula-

tion of DNL [232,234,235].          

4. General discussion and remaining issues 

After reading this review, the reader might have the feeling 

that most of the data regarding DILI in obesity and NAFLD do 

not rely on solid evidence. This is right because this medical 

issue has been identified relatively recently and thus, only a few 

data have been collected thanks to a handful of clinical and 

experimental investigations. The sad news is that one cannot 

expect to have a clear picture of the situation in the next few 

years because there are more than 350 potential hepatotoxic 

drugs currently on the market [1,2], without mentioning the 

numerous herbals and dietary supplements that can also induce 

liver injury [236-238]. Importantly, many drugs, herbals and 

dietary supplements are taken by obese patients in order to 

treat different associated disorders (hyperlipidemia, T2D, hy-

pertension), or to induce weight loss. Clearly, more investiga-

tions are needed in order to determine what are the drugs (or 

other compounds) that can induce liver injury in obese patients 

and also to decipher the involved mechanisms.  

The issue of DILI in obesity is also complicated by the fact 

that an aggravation of NAFLD secondary to a treatment could 

be clinically silent in some obese individuals. Indeed, normal 

levels of plasma ALT and AST can be observed in a significant 

number of patients with NAFLD, even in those with NASH 

and hepatic fibrosis [239,240]. Moreover, when NAFLD is 

associated with increased transaminase levels, such elevation 

is in general modest and cannot discriminate simple steatosis 

from NASH [241,242]. Thus, caregivers should keep in mind 

that drug-induced NAFLD aggravation will not necessarily be 

associated with a worsening of liver enzymes and that other 

investigations could be needed to monitor hepatic function and 

histology.  

Two different strategies can be implemented to collect fur-

ther information regarding DILI in obesity and NAFLD. Nota-

bly, these strategies are not mutually exclusive. 

First, prospective clinical studies might be designed but one 

should keep in mind that DILI is a rare event. Indeed, it is es-

timated that this adverse effect occurs at the most in about 1 

per 10,000 individuals who take the drug [237,243]. Thus, it 

will be difficult for some drugs to draw valid conclusion be-

cause the very low number of DILI cases will preclude to sta-

tistically ascertain that obesity and/or NAFLD actually in-

creases the risk of hepatotoxicity. Furthermore, as previously 

mentioned, numerous drugs are potentially hepatotoxic and 

thus it is difficult to a priori select one particular drug (or a 

drug class) that will be specifically studied in patients. Despite 

these caveats, it would be interesting to carry out prospective 

studies with drugs with high toxicity potential (e.g. methotrex-

ate, tamoxifen, NRTIs) in order to confirm or not their liability 

in obese patients.  

A second strategy is to perform experimental investigations 

in order to identify the drugs that might be more hepatotoxic in 

obesity and NAFLD. Although studies in obese rodents can be 

informative [53,54,121,171,202,204,231], such in vivo inves-

tigations are not amenable for the screening of a large number 

of drugs. In contrast, in vitro investigations appear to be the 

best strategy to rapidly screen a large number of drugs. In the 

past ten years, numerous cellular models of NAFLD have been 

developed by researchers willing to study the different patho-

physiological consequences related to hepatocellular fat ac-

cumulation, including XME expression and drug-induced cy-

totoxicity [244-252]. However, most of these studies used hu-

man hepatoma cell lines (e.g. HuH7, HepG2) that do not have 

the full repertoire of XMEs, or rodent hepatocytes that do not 

have the same profile of drug metabolism than human hepato-
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cytes. Moreover, all these studies were performed in cells in-

cubated with fatty acids for a short duration of time (from a 

few hours to 2 or 3 days). This is probably too short to induce 

most of the hepatocellular alterations or adaptations secondary 

to lipid accumulation. Recently, we set up a cellular model of 

NAFLD by using HepaRG cells incubated with stearic acid for 

7 days [24]. Importantly, CYP2E1 activity was increased 

whereas CYP3A4 activity was decreased in these stearate- 

loaded cells [24], thus reproducing what has been consistently 

observed in obese patients with NAFLD [8,18,25,26]. In addi-

tion, our cellular model was successfully used to demonstrate 

that increased APAP cytotoxicity in stearate-loaded cells was 

due to higher CYP2E1 activity [24]. Hence, we believe that 

such cellular model can be valuable to screen a great number of 

potentially hepatotoxic drugs. For drugs presenting signifi-

cantly higher cytotoxicity in steatotic cells compared to 

non-steatotic cells, further studies in obese rodents might be 

warranted before considering clinical investigations. Even if 

drug metabolism presents significant differences between ro-

dent and human, such investigations could be interesting in 

order to determine whether the in vitro effects can be repro-

duced in an in vivo situation.  

Experimental investigations also offer the possibility to 

perform mechanistic investigations. By using rodent and cel-

lular models of NAFLD, it will be for instance interesting to 

determine whether mitochondrial dysfunction is a central 

mechanism involved in drug-induced aggravation of NAFLD 

(Figure 3). Notably, almost all drugs that have been shown or 

suspected to worsen NAFLD are able to impair mitochondrial 

function, although the exact mechanisms of such mitochondrial 

dysfunction greatly differ from one drug to another. As already 

mentioned, drug-induced mitochondrial dysfunction might 

explain not only why hepatic fat can further accumulate but also 

why necroinflammation and fibrosis can be worsened in some 

patients. However, although numerous drugs are known to be 

mitochondriotoxic [4,6,104,253-255], it seems unlikely that 

NAFLD aggravation could be observed with all these drugs. 

Thus, additional mechanisms unrelated to mitochondrial dys-

function might also be involved such as induction of ER stress, 

JNK activation, impairment of autophagy and the accumula-

tion of certain lipid intermediates since these events could play 

a significant role in NAFLD progression [256-258]. Finally, it 

would be also interesting to determine whether the drugs 

shown or suspected to worsen NAFLD are able to reduce the 

expression and activity of patatin-like phospholipase domain 

containing 3 (PNPLA3), a lipase which appears to play a major 

role in the occurrence of fatty liver and its progression to stea-

tohepatitis [259,260]. 
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