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Being critical mediators of liver homeostasis, connexins and their channels are frequently involved in liver 

toxicity. In the current paper, specific attention is paid to actions of hepatotoxic drugs on these communi- 

cative structures. In a first part, an overview is provided on the structural, regulatory and functional proper-

ties of connexin-based channels in the liver. In the second part, documented effects of acetaminophen, 

hypolipidemic drugs, phenobarbital and methapyriline on connexin signaling are discussed. Furthermore, 

the relevance of this subject for the fields of clinical and in vitro toxicology is demonstrated.  

Relevance for patients: The role of connexin signaling in drug-induced hepatotoxicity may be of high 

clinical relevance, as it offers perspectives for the therapeutic treatment of such insults by interfering with 

connexin channel opening. 
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1. Introduction 

Gap junctions are goalkeepers of intercellular communica-

tion by mediating the passive diffusion of small and hydro-

philic molecules, such as glutathione, adenosine triphosphate, 

cyclic adenosine monophosphate, inositol triphosphate, and 

ions, including calcium, sodium and potassium [1,2]. A  

plethora of physiological processes are regulated by substances 

that are intercellularly exchanged via gap junctions and hence 

gap junctional intercellular communication (GJIC) is consid-

ered as a key mechanism in the control of tissue homeostasis 

[3-13]. The liver was among the first organs in which gap 

junctions have been characterized [14,15]. More than 40 years 

ago, Goodenough isolated 2 gap junction proteins from mouse  

liver and called them connexins (Cx) [16]. At present, 21 dif-

ferent connexins have been identified in humans and rodents, 

all that are expressed in a cell type-specific way and named 

based on their molecular weight [17]. Nonetheless, they all 

share a common structure consisting of 4 transmembrane do-

mains, 2 extracellular loops, 1 cytosolic loop, 1 cytosolic car-

boxyterminal tail and 1 cytosolic aminotail. Following synthe-

sis, 6 connexins form a hemichannel at the plasma membrane 

surface, which then docks with another hemichannel from a 

neighboring cell to generate a gap junction [18-20] (Figure 1). 

This occurs at the extracellular domains, where conserved 

cysteine residues create disulfide bonds [21]. In recent years, it 

has become clear that undocked hemichannels may also pro-

vide a pathway for cellular signaling on their own indepen- 

dently of their role as structural precursors of gap junctions. 

Unlike their full channel counterparts, hemichannel communi-

cation occurs between an individual cell and its extracellular 

environment, yet the messengers that permeate hemichannels 

are very similar to those involved in GJIC [22-26]. Despite 

some structural variation between connexins, the first extra-

cellular loop, the first transmembrane domain, the cytosolic 
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Figure 1. Structure of connexins and their channels. Gap junctions group 

in so-called plaques at the plasma membrane surface and are formed by 

the docking of 2 hemichannels from neighboring cells, which in turn are 

built up by 6 connexins. Connexins share a similar structure consisting of 

4 transmembrane domains (TM), 2 extracellular loops (EL), 1 cytosolic 

loop (CL), 1 cytosolic carboxyterminal tail (CT) and 1 cytosolic aminotail 

(NT).  

 
aminotail and/or the cytosolic loop are considered to contri- 

bute to hemichannel pore opening [27]. Inherent to their parti- 

cipation in the maintenance of tissue homeostasis, connexins 

and their channels, in casu in liver, are also often involved in 

pathological processes, such as in liver disease and hepato- 

toxicity [28,29]. The present paper specifically focuses on the 

role of connexin signaling in drug-induced liver injury (DILI). 

2. Connexin-based channels in liver 

2.1. Structural properties 

Cx32 is the predominant connexin in liver and is expressed 

by hepatocytes and sinusoidal endothelial cells next to small 

quantities of Cx26, which is equally produced by stellate cells 

and Kupffer cells [30-32]. In addition, Cx43 is present in  

Kupffer cells, stellate cells, sinusoidal endothelial cells, cells 

of Glisson’s capsule and cholangiocytes [32-37], while Cx40 

and Cx37 have been detected in liver vascular cells (Table 1) 

[38-40]. Nevertheless, functional gap junctions have thus far 

only been demonstrated in hepatocytes and stellate cells [32]. 

In fact, gap junctions in the pericentral and periportal acinar 

regions typically are Cx32 homotypic and Cx32-Cx26 hetero-

typic channels, respectively [35,41]. This complies with the  

observation that Cx26 is mainly expressed in the periportal 

area, whilst Cx32 is evenly distributed in liver tissue [42,43]. 

2.2. Regulatory properties 

Connexin signaling can be regulated by a plethora of 

mechanisms at the transcriptional, posttranscriptional, trans- 

lational and posttranslational level. As such, 2 major kinetic 

sources of regulation have been described, namely short-term 

control (i.e. millisecond to minute range) and long-term con-

trol (i.e. hour range). They cooperate to fine-tune the degree of 

intercellular communication by controlling the number of 

channels, their functional state and their unitary permeability 

[44,45]. 
 

Table 1. Expression of connexins in liver 

Connexin Cell type References 

Cx26 hepatocytes [164-166]  

 stellate cells [32]  

 sinusoidal endothelial cells  [32] 

 Kupffer cells  [32] 

Cx32 hepatocytes [32,167] 

 biliary endothelial cells  [36] 

 sinusoidal endothelial cells  [32] 

Cx37 hepatic artery endothelial cells  [38-40] 

 portal vein endothelial cells  [38-40] 

Cx40 hepatic artery endothelial cells  [38-40] 

 portal vein eindothelial cells  [38-40] 

Cx43 biliary epithelial cells  [36, 168] 

 Kupffer cells  [32-34,159] 

 stellate cells  [32, 38] 

 sinusoidal enothelial cells  [32, 38] 

 hepatic artery endothelial cells [38-40] 

 portal vein endothelials cells  [38-40] 

 
Long-term control of GJIC involves regulation at the trans- 

criptional level of connexin expression [44,46]. Connexin gene 

promoters show binding affinity for several ubiquitous trans- 

cription factors, such as activator protein 1. Furthermore, a 

number of cell type-specific transcription factors govern con-

nexin gene transcription, including hepatocyte nuclear factor 

1α that regulates Cx32 production in liver [47-49]. In addition, 

epigenetic mechanisms, in particular histone acetylation and 

DNA methylation, influence connexin gene expression [46,50], 

as shown in liver cells [51-53]. 

Short-term control of GJIC, so-called gating, is regulated by 

a variety of factors [54-57], among which posttranslational 

modifications, such as S-nitrosylation, sumoylation and phos-

phorylation, are prominent ones [58,59]. S-nitrosylation occurs 

at intracellular cysteine residues and is mediated by nitric ox-

ide, which might be the underlying mechanism of increased 

hemichannel opening induced by metabolic inhibition and 

inflammatory conditions [60,61]. Irreversible conjugation of 

small ubiquitin-like modifiers to lysine residues, so-called 

sumoylation, regulates Cx43 levels and the number of Cx43- 

based gap junctions at the plasma membrane [62]. Phosphory-

lation encompasses the addition of phosphate groups to polar 
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amino acid side chains, among which serine, threonine and 

tyrosine residues. This posttranslational modification almost 

uniquely takes place at the cytoplasmic carboxyterminal tail. 

With the exception of Cx26, all known connexins are phos-

phoproteins that are targeted by a broad panel of kinases. The 

regulation of gap junction opening by phosphorylation is  

complex and depends on the nature of the kinase and the iden-

tity of the connexin family member [55,59,63]. Cx43 may  

occur as a nonphosphorylated isoform and 2 phosphorylated 

isoforms [64-66]. In liver, Cx43 is mostly presented as the 

nonphosphorylated variant in quiescent conditions [52,67].  

2.3. Functional properties 

The establishment of GJIC is indispensable for the per- 

formance of many liver-specific functions, including albumin 

secretion [68], glycogenolysis [69-71], ammonia removal [68], 

bile secretion [72,73] and xenobiotic biotransformation 

[74-76]. Both the constitutive and drug-induced production of 

cytochrome P450 isoenzymes, in particular cytochrome P450 

2B6 and 3A4, require the presence of Cx32-based gap junc-

tions [77]. Induction of cytochrome P450 1A1/2 and 2B1/2 

coincides with downregulation of pericentral Cx32 protein 

amounts in rat [74-76]. These concomitant changes may reflect 

a defense mechanism to restrict the intercellular diffusion of 

reactive intermediates produced through xenobiotic biotrans-

formation [74]. Gap junctions composed of Cx32 also propa-

gate glycogenolytic responses from the periportal to the peri-

central pole, in particular by controlling the intercellular traf-

ficking of inositol triphosphate [70]. The latter activates cal-

cium release from endoplasmic reticulum stores, in turn  

evoking calcium waves throughout the acinar tract [78]. Like-

wise, bile secretion from cholangiocytes depends on the spread 

of calcium waves through Cx43-based gap junctions [36,73]. 

Upon partial hepatectomy, gap junction coupling intensifies 

in the G1 phase of the cell cycle, followed by a dramatic de-

crease during initiation of DNA synthesis. This is paralleled by 

similar changes in Cx32 expression [79-89]. In the regenerat-

ing liver of rats treated with an inhibitor of mitogen-activated 

protein kinase, the disappearance of Cx32 is inhibited without 

affecting hepatocyte proliferative activity [82], which suggests 

that downregulation of GJIC may occur independently of cell 

growth. However, in the regenerating liver of Cx32-/- mice, 

proliferative activity of the hepatocytes is not enhanced, yet 

the extent of synchronous initiation and termination of DNA 

synthesis is decreased. This may point to a supporting role for 

gap junctions in liver cell cycling [86,90]. The involvement of 

connexin signaling in liver cell growth may actually be more 

critical as anticipated. Thus, overexpression of Cx32 and Cx26 

in rat liver epithelial cells and human hepatoma cells triggers 

the production of the cell cycle inhibitor p27 and the adherens 

junction protein E-cadherin, respectively, which, in turn, sup-

press proliferation [91].  

Connexins and their channels have been reported to partic-

ipate in different cell death processes in liver, including apop-

tosis [67,92,93], necrosis [94] and autophagy [95]. Interest-

ingly, accumulating evidence suggests that connexin hemi-

channels, rather than gap junctions, are involved in liver cell 

death. Following induction of apoptosis in primary hepatocytes, 

GJIC rapidly deteriorates, which is accompanied by a decay of 

the gap junctional Cx32 protein pool. Concomitantly, Cx32 is 

de novo synthesized and gathers in a hemichannel configuration. 

This becomes particularly evident towards the final stages of 

the cell death process, where Cx32 hemichannels facilitate the 

apoptosis-to-necrosis transition [92,96]. Along the same line, 

Cx43 signaling, also partly relying on hemichannels, was found 

to facilitate the onset of spontaneous apoptosis in cultures of 

primary hepatocytes [67].  

3. Connexin-based channels and drug-induced liver 

injury 

3.1. Acetaminophen 

DILI is the leading cause of acute liver failure in Western 

countries with the vast majority being caused by overdosing 

with acetaminophen (APAP), a readily available analgesic and 

antipyretic drug [97,98]. After APAP intoxication in rodents, a 

switch in mRNA and protein production from Cx32 and Cx26 

to Cx43 is observed [93,99]. The upregulation of Cx43 quanti-

ties is due to recruitment of Cx43-expressing inflammatory 

cells, but also originates from de novo production of hepato-

cytes [99]. In this regard, a recent study revealed that Cx43+/- 

mice display increased liver cell death, inflammation and oxi-

dative stress in comparison with wild type (WT) littermates 

after APAP overdose [99]. These results suggest that newly 

synthesized hepatic Cx43 may protect against APAP-induced 

liver toxicity. A limited number of reports have described a 

role for Cx32-based gap junction in APAP-triggered hepato-

toxicity using genetically modified animals, albeit with con-

tradicting outcomes [93,100-102]. In this respect, Naiki-Ito 

and colleagues administered APAP to Cx32-dominant negative 

transgenic rats and noticed decreased aminotransferase serum 

levels and attenuated liver damage in comparison with WT 

animals [93]. Likewise, ceramide synthase 2-null mice, in 

which Cx32 is located in the cytosol of hepatocytes and that 

display aberrant GJIC, are less susceptible to APAP-induced 

hepatotoxicity [102]. In addition, an in vitro study showed 

protection against synchronized necrotic cell death of attached 

hepatocytes originating from Cx32/ mice compared to WT 

hepatocytes treated with APAP. This synchronization of cell 

death was mediated by gap junctions formed of Cx26 and 

Cx32. Furthermore, APAP-sensitive male hepatocytes were 

protected by attachment to APAP-insensitive female hepato-

cytes, with this protection being dependent on gap junctions. 

This points to a role for gap junction-based signaling in 

hepatocyte death by distribution of either death signaling mol-

ecules or survival messengers between hepatocytes [94]. In 
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contrast, another report described increased serum amino- 

transferase levels and more pronounced liver insults in Cx32-/- 

mice after administration of APAP, indicating a cytoprotective 

function for hepatic Cx32 in APAP-induced injury, possibly 

linked to the trafficking of glutathione between hepatocytes 

via gap junctions [100]. This can be reconciled with the docu-

mented suppression of Cx32 production and simultaneous re-

duced channel activity upon exposure of hepatocytes to liver 

toxicants both in vitro and in vivo [29,101]. However, our 

group recently found that Cx32-/- mice form less protein ad-

ducts 6 hours after APAP administration, which could indicate 

a lower metabolic activity upon genetic ablation of Cx32 [101]. 

Indeed, at the more upstream mechanistic platform of APAP 

toxicity, cell death results from protein adduct formation in-

volving N-acetyl-p-benzoquinone imine, the toxic metabolite 

of APAP [103,104]. This could question the suitability of ge-

netically deficient rodents for investigating the role of Cx32 in 

APAP-induced hepatotoxicity. A possible alternative is the use 

of inhibitors of Cx32-based gap junctions. In this regard, a 

small molecule inhibitor of Cx32-based gap junctions, called 

2-aminoethoxy-dipenyl-borate (2-APB), was reported to pro-

tect against liver failure and death in WT mice when co-admi-

nistered with APAP [105]. However, a follow-up study 

demonstrated that the protection was only minor or completely 

lost when 2-APB was administered 1.5 hours or 4-6 hours, 

respectively, after APAP. In addition, part of the protection was 

due to the solvent dimethyl sulfoxide. Furthermore, in vitro 

experiments showed that the protection of 2-APB was caused 

by inhibition of metabolic activation of APAP as well as by 

inhibition of the c-jun-N-terminal kinase signaling pathway 

and not by blocking Cx32-based gap junctions [106]. In es-

sence, de novo produced Cx43 after APAP-induced liver  

toxicity seems to have a protective role, while contradictory 

results were found with respect to the role of Cx32-based sig-

naling. 

3.2. Hypolipidemic drugs 

Peroxisome proliferator-activated receptor α agonists, such 

as clofibrate [107], nafenopin [108] and Wy-14,643 [109] are 

lipid-lowering agents, which drive the expression of genes 

involved in fatty acid transport, binding and β-oxidation in 

favor of proliferative activity. Chronic treatment of rodents 

with peroxisome proliferators has been associated with hepato- 

carcinogenesis due to an induction of cell proliferation coupled 

to a suppression of hepatocyte apoptosis [107-109]. Both in 

vitro [110-112] and in vivo [113,114], it has been found that 

clofibrate, nafenopin and Wy-14,643 reduce hepatocellular 

GJIC. Inhibition of GJIC by Wy-14,643 occurs in a species- 

specific way, since it takes place in primary cultured hepato-

cytes from rat, mouse and hamster, but not from monkey and 

human [112]. Similarly, treatment of primary hepatocytes from 

rat, but not from guinea pig, with nafenopin causes reversible 

disappearance of GJIC [110]. The latter did not result from 

altered Cx26 and Cx32 protein levels or modifications in the 

cellular localization of Cx32, but was linked to protein kinase 

C-mediated phosphorylation of Cx32 [111]. By contrast, clofi-

brate [113,115] and Wy-14,643 [114] suppressed hepatic Cx26 

and Cx32 protein levels. In addition, clofibrate enhanced the 

appearance of Cx43 in the cytoplasm of hepatocytes [113]. 

Overall, peroxisome proliferators seem to perturb GJIC and 

alter hepatic connexin expression. Stimulation of hepatocyte 

proliferation by these agents has also been shown to be medi-

ated, at least in part, by tumor necrosis factor α (TNFα) 

[116,117]. Therefore, a conceivable explanation is that the 

downregulation of the connexin signaling is driven by TNFα 

released in response to peroxisome proliferators [114,118,119]. 

Indeed, TNFα treatment has been shown to modulate GJIC and 

to downregulate connexin gene expression [120]. Hence, GJIC 

inhibition by TNFα and subsequent promotion of hepatocyte 

proliferation might be a possible mechanistic interpretation of 

the effects of peroxisome proliferators in liver.  

3.3. Phenobarbital  

Phenobarbital or phenobarbitone (PB) is an anti-epileptic 

drug that has sedative and hypnotic properties. It is frequently 

used as a model tumor promoter in rodent liver and alters the 

expression of a broad set of genes [116,117], of which, those 

related to cytochrome P450-dependent xenobiotic biotrans-

formation have gained most attention [118]. The presence of 

functional gap junctions consisting of Cx32, but not of Cx26, 

is a prerequisite for the promotional activity of PB, since 

Cx32-/- mice [121,122], unlike Cx26-/- mice [124], are resistant 

to promotion of hepatocarcinogenesis by this barbiturate. Fur-

ther-more, a subset of genes is differentially affected by PB in 

the liver of Cx32-/- mice compared to their WT counterparts 

[123]. Interestingly, connexins are required for PB-mediated 

tumor promotion. It has been shown by several groups that gap 

junction activity becomes reduced upon administration of PB 

to rodents [74,113,125-128]. This is associated with abnormal 

frequency and size of gap junctions on the hepatocyte plasma 

membrane surface [129], decreased Cx32 immunoreactivity 

[74,125,130] and aberrant Cx32 localization [113,126], 

whereas Cx26 expression is not affected [74,125,126]. Both 

unchanged [74,128] and decreased [131,132] hepatic Cx32 

mRNA levels are seen in PB-treated rodents. As shown in ro-

dent models in vivo [128] and in vitro [133,134], the reduction 

of GJIC by PB occurs in a strain-specific way. Furthermore, 

the inhibitory effect of PB on GJIC between primary cultured 

mouse hepatocytes depends on xenobiotic biotransformation 

capacity, as it is abolished by a cytochrome P450 inhibitor 

[135]. 

3.4. Methapyrilene  

Methapyrilene is an antihistamine with strong sedative 

properties that has been mainly prescribed to treat insomnia. It 

has been banned in most countries because of its potential to 
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cause serious liver damage [136]. In recent years, methapy-

rilene has been tested in several toxicogenomics studies 

[136-140] and even in integrated systems toxicological trials 

[141] as a typical nongenotoxic hepatocarcinogen, whereby it 

became clear this drug induces numerous alterations in critical 

metabolic and signaling pathways. With respect to intercellular 

communication mediated by gap junctions, it has been found 

that the number and size of Cx32-containing gap junction 

plaques in liver are negatively affected upon treatment of male 

rats with a carcinogenic dose of methapyrilene. However, this 

dose also increased the occurrence of apoptosis, which may 

also contribute to the negative affect of methapyrilene on liver 

gap junctions [142]. 

4. Conclusions and perspectives 

Because of its unique function and localization in the body, 

the liver is a primary target of toxicity induced by xenobiotics, 

including pharmaceuticals. Connexins and their channels are 

frequently involved in DILI, yet their exact role still is a matter 

of debate. In this light, Cx32-/- mice display lack of promotion 

of hepatocarcinogenesis by PB [121-123] and Wy-14,643 

[143], suggesting that Cx32 signaling aggravates the adverse 

outcome. However, most evidence points to a rather defensive 

function for connexin signaling [90,144-149]. Thus, a high 

incidence of chemical-induced liver tumors was observed in 

mice deficient for Cx32 [90,144] and APAP-related liver inju-

ry is increased in Cx43+/- mice [99]. This discrepancy may be 

due, at least in part, to opposite actions of gap junctions and 

hemichannels. Indeed, while gap junctions are mainly associ-

ated with physiological functions, hemichannels are closed 

most of the time and seem to preferably open in pathological 

conditions [2,23,150,151]. Such differential effects of channels 

consisting of the same connexin building blocks are controver-

sial and deserve further scrutiny. To add another layer of com-

plexity, a novel class of connexin-like proteins has been iden-

tified in the last decade, namely the pannexins, which gather in 

a configuration identical to connexin hemichannels and that 

also provide an additional pathway for communication be-

tween the cytosol of individual cells and their extracellular 

environment [152,153]. Pannexins have been detected in a 

number of liver cells, in particular hepatocytes [154-159], and 

have been linked to lipoapoptosis [158]. Hence, pannexin sig-

naling may also be potentially involved in drug-induced hepa-

totoxicity, a hypothesis that should be verified in the upcoming 

years. 

The role of connexin signaling in DILI may be of high  

clinical relevance, as it offers perspectives for the therapeutic 

treatment of such insults by interfering with connexin channel 

opening. While doing is, care should be taken to develop spe-

cific channel modifiers. Besides the clinical toxicological im-

portance, connexins and their channels are equally of interest 

to in vitro toxicologists. Specifically, inhibition of GJIC may 

represent a biomarker for the detection of nongenotoxic hepa-

tocarcinogens, as shown for several drugs [114,142,160-163]. 

This could allow developing an in vitro assay for the testing of 

nongenotoxic carcinogenicity that might be used during early 

drug development [28].  
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