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Research on acetaminophen (APAP) toxicity over the last several decades has focused on the pathophysiology of 

liver injury, but increasingly attention is paid to other known and possible adverse effects. It has been known for 

decades that APAP causes acute kidney injury, but confusion exists regarding prevalence, and the mechanisms have 

not been well investigated. More recently, evidence for pulmonary, endocrine, neurological, and neurodevelopmental 

toxicity has been reported in a number of published experimental, clinical, and epidemiological studies, but the 

quality of those studies has varied. It is important to view those data critically due to implications for regulation and 

clinical practice. Here, we review evidence and proposed mechanisms for extrahepatic adverse effects of APAP and 

weigh weaknesses and strengths in the available data.  

Relevance for patients: APAP is one of the most commonly used drugs in the West. Although it is generally 

considered safe when used according to manufacturer recommendations, it has been known for decades that overdose 

can cause liver injury. Recent studies have suggested that APAP can damage cells in other organs as well, leading to 

calls for more and stricter regulations, which would limit use of this otherwise effective drug. It is especially 

important to view claims of developmental effects of antenatal APAP exposure with a critical eye because APAP is 

currently the only over-the-counter medication recommended for pregnant women to self-treat pain and fever. 
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1. Introduction

Acetaminophen (APAP; a.k.a. paracetamol) is one of the

most commonly used drugs in the US [1] and throughout the 

West, but has a relatively low therapeutic index. The major 

target organ of APAP toxicity is the liver. In fact, APAP is the 

principal cause of acute liver failure (ALF) and related deaths 

in several countries [2]. The hepatotoxicity of APAP was first 

reported in the 1960s [3-5]. In the five decades since those initial 

reports, studies of APAP toxicity have focused almost exclusively 

on the prevalence and mechanisms of liver injury. Recently, 

however, attention has shifted toward other adverse effects. A 

large number of studies have reported neurological [6-14], 

pulmonary [15-21] and developmental toxicity [6,7,11,14,22] 

in both preclinical models and humans. 

It is important to critically evaluate the evidence for toxic 

effects of any drug or other xenobiotic. Claims of toxicity can 

lead to changes in clinical practice or regulation that can affect  

patient care. Recently, concerns regarding liver injury caused by 

APAP have led the US FDA to reduce the maximum amount of 

APAP allowed in prescription formulations to 325 mg, and to 

recommend lower daily doses for over-the-counter use [23]. It 

is especially important to view claims of developmental and 

congenital effects of intrauterine APAP exposure with a critical 

eye because APAP is currently the most commonly used drug 

among pregnant women and for many years was the only 

analgesic considered safe for use during pregnancy [24,25], a 

perception that still exists among many clinicians and patients. 

An association between APAP use in pregnancy and disease in 

offspring could easily lead to changes in clinical practice,
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just as associations between NSAIDs and various adverse 

outcomes such as low birth weight, birth defects, and child 

mortality led the FDA to classify aspirin and others as 

category D for pregnancy, meaning that there is positive 

evidence for maternal fetal risk, and caused clinicians to 

recommend against their use [24].  

The purpose of this review is to summarize studies of 

adverse extrahepatic effects of APAP and to evaluate the 

evidence for those effects. Animal studies, human studies and 

epidemiological reports are discussed. Special attention is 

given to the pathophysiological mechanisms that have been  

proposed to explain the phenotypic findings from those data. 

The review begins with what is known about the mechanisms 

of toxicity in the liver, and findings from other organs are 

discussed with reference to those well-known mechanisms. 

Overall, it is clear that APAP is toxic in other organs, but the 

quality of the evidence and mechanisms varies. In many cases, 

there is a paucity of mechanistic data, or the available 

mechanistic studies suffer from poor design. However, that 

does not necessarily invalidate observations of adverse effects. We 

strongly recommend that future investigations use only reliable 

in vivo models and doses that are relevant for the human 

context.  

Table 1. Proposed extra-hepatic adverse effects of APAP 

Toxicity Evidence Proposed mechanisms Comments 

Renal Clinical and rodent studies Protein binding, ɤ-glutamyl cycling Strong human and rodent data 

Pulmonary Epidemiology, limited preclinical studies GSH depletion, oxidative stress, neurogenic inflammation Better study designs needed 

Endocrine Epidemiology, limited preclinical studies 
Altered sex steroid metabolism, inhibition of prostaglandin 

synthesis 

Conflicting human and experimental 

data 

Ototoxicity Case reports, limited preclinical studies Oxidative stress, ER stress 
Strong human data, conflicting 

experimental data 

Neurobehavioral Epidemiology, limited preclinical studies 
Endocrine disruption, endocannabinoid signaling, direct 

neurotoxicity 
Better study designs needed 

 

2. Overview of APAP metabolism and hepatotoxicity 

Although several critical details are still missing, the 

metabolism and toxicity of APAP in the liver have been 

thoroughly investigated [26] ( Figure 1). After therapeutic doses, 

approximately one-third is glucuronidated while another third 

is sulfated [26, 27 ]. Any remaining parent compound is 

converted by cytochrome P450 enzymes to an electrophilic 

intermediate, believed to be N-acetyl-p-benzoquinone imine 

(NAPQI) [28]. Binding of the reactive metabolite to proteins 

is known to be the initiating event in liver injury [29-32]. 

Binding to mitochondrial proteins appears to be particularly 

important. Changes in mitochondrial function and integrity 

are known to occur in the liver after APAP overdose in both 

mice and humans [15, 33 - 36 ]. Interestingly, the reactive 

metabolite of N-acetyl-p-aminophenol (AMAP), an isomer of 

APAP, binds much less to mitochondrial proteins in primary 

mouse hepatocytes (PMH) than the metabolite of APAP, and 

PMH are much less susceptible to the toxicity of AMAP than 

of APAP [37]. Furthermore, unlike PMH, AMAP treatment 

does result in mitochondrial protein adducts in primary 

human hepatocytes (PHH) [37], which are damaged by AMAP 

[37,38]. Finally, rats are less susceptible to APAP hepatotoxicity 

than mice and also have less mitochondrial protein binding after 

APAP overdose [39]. Together, those data strongly suggest that 

mitochondrial protein binding is critical. 

Although it is not known exactly how it occurs, the 

mitochondrial protein binding seems to cause oxidative stress. 

The major reactive oxygen species (ROS) in APAP hepatotoxicity 

are superoxide (O2-) and peroxynitrite (ONOO-) [40], which form 

primarily within mitochondria and drive the injury [40-46]. 

Replenishment of glutathione by treatment with the precursor 

N-acetylcysteine (NAC) protects against APAP hepatotoxicity 

not only by scavenging the reactive metabolite of APAP, but also 

by reducing oxidative stress [47,48].  

The initial oxidative stress after APAP overdose activates 

mitogen - activated protein kinases (MAPKs), including the c-

Jun N-terminal kinases (Jnk) 1/2 [49,50] ( Figure 1). The role of 

Jnk 1/2 is controversial. The Jnk 1/2 inhibitor SP600125 protects 

against APAP toxicity in mice in vivo and in both PMH and 

PHH [51,52]. Although some groups have also shown 

protection with knockdown or knockout of Jnk isoforms, 

particularly Jnk2 [51], others have failed to reproduce those 

results [52-55]. The discrepancy between different studies that 

utilized Jnk2 deficient mice may be due to use of control 

animals from different substrains [56]. Interestingly, one recent 

study demonstrated that neither Jnk 1 nor combined Jnk 1/2 

deficiency in the liver is protective against APAP hepatotoxicity 

[55]. In fact, Jnk1/2 knockout appeared to worsen injury [55]. 

Furthermore, SP600125 protected in the double knockout mice 

[55]. The authors concluded that Jnk 1/2 is not part of the 

mechanism of toxicity and that SP600125 protects through off-

target effects [55]. However, those results do not explain why 

other Jnk 1/2 inhibitors also protect against APAP [53,57]. 

Overall, the weight of the evidence favors a role for Jnk [58]. 

Once activated, Jnk 1/2 translocates to mitochondria [44,59], and it 

is thought that it enhances the mitochondrial oxidative stress 

[59,60]. Other kinases that have been shown to play a role in 

mice include the mixed lineage kinase 3 (Mlk3) [61] and the 

receptor interacting protein kinases (Ripk) 1 and 3 [62-64]; 

however, their exact mechanisms are unclear. 
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Figure 1. Pathophysiology of APAP-induced liver and kidney injury. 

Most of a dose of acetaminophen (APAP) is glucuronidated or sulfated 

in the liver and then excreted. A small percentage in both the liver and kidney 

is converted to the electrophilic intermediate N-acetyl-p-benzoquinone 

imine (NAPQI). NAPQI can be detoxified by reaction with glutathione 

(GSH), which depletes GSH stores. NAPQI can also bind to proteins, 

which leads to cell death. The mechanisms of cell death in the liver 

include mitochondrial oxidative stress, c-Jun N-terminal kinase (JNK) 

activation and nuclear DNA fragmentation (inset). In the kidney, GSH 

depletion is exacerbated by the GGT cycle, which enhances the 

nephrotoxicity. 

 

The mitochondrial permeability transition (MPT) is also a 

critical step in the mechanism of APAP-induced liver injury 

( Figure 1). MPT inhibitors and genetic deletion of MPT pore 

components protect against APAP hepatotoxicity both in vitro 

and in vivo [34,65-67]. The resulting mitochondrial swelling 

leads to lysis of mitochondria and release of mitochondrial 

contents [35,68,69]. Mitochondrial endonucleases, in particular, 

are liberated and translocate to nuclei where they cleave 

genomic DNA [69]. Although nuclear DNA fragmentation is 

widely considered a hallmark of apoptosis, oncotic necrosis is 

actually the major mode of cell death in the liver after APAP 

overdose. Studies in both humans and mice demonstrate that 

apoptosis has, at most, a minor role [70-73]. 

In addition to the intracellular mechanisms of toxicity described 

above, results from numerous studies have demonstrated that 

inflammation may enhance APAP-induced liver injury 

[74,75]. The earliest evidence for a contribution of inflame-

mation to APAP hepatotoxicity was the finding that resident 

macrophages in the liver (Kupffer cells) are activated after 

APAP overdose in rats [76] and that inhibition of macro-

phages with gadolinium chloride was protective in that model 

[ 77 ]. The latter finding was later repeated in mice [ 78 ]. 

Similarly, it was also reported that antibodies against 

neutrophils can protect against APAP hepatotoxicity in rats and 

mice [79,80]. Finally, damage-associated molecular patterns 

(DAMPs) are released during APAP hepatotoxicity in both 

mice and humans [35,36] and several studies revealed that 

inhibition of Nalp3 inflammasome-mediated DAMP signaling 

in myeloid cells can reduce the injury [81-84]. However, the 

conclusions from those studies are controversial. Gadolinium 

chloride has numerous effects other than macrophage inactivation 

that could also explain protection against hepatotoxicity, and it 

was reported that targeting macrophages with liposomal 

clodrinate actually exacerbated the APAP-induced liver injury 

[85]. Furthermore, deficiency of Nalp3 signaling components 

does not protect against APAP toxicity, and modulation of IL-1β 

signaling also has no effect [86,87]. For more detailed information 

about sterile inflammation in APAP hepatotoxicity, the reader is 

directed to two excellent reviews that have recently been 

published [74,75].  

Importantly, it appears that the mechanisms of APAP 

hepatotoxicity are the same in both humans and mice. Both 

GSH depletion [88,89] and APAP-protein binding are known 

to occur in humans [27,90] and oxidative stress, Jnk 1/2 activation 

and the MPT have been demonstrated in human hepatocytes 

treated with APAP [50,73]. Finally, there is evidence that 

mitochondrial damage is important in human APAP 

hepatotoxicity too [35,36,91]. 

3. Nephrotoxicity 

Evidence. Numerous studies have shown that large doses of 

APAP can cause kidney injury in rodent models [4,15,92-96] and 

many reports of kidney injury in humans after APAP overdose 

have been published [3,97-102]. An often-cited figure for the 

overall incidence of renal dysfunction in patients diagnosed with 

APAP overdose is approximately 1%. However, this was 

derived from a single early review of unselected patients 

diagnosed with “APAP poisoning” at a single center in the UK 

[103]. Multiple reports suggest that the prevalence of renal injury 

among APAP overdose patients who develop liver injury is 

much greater; values from 10% to 79% have been reported 

[98,99,102-105]. One study found that circulating creatinine 

levels were ≥ 2 mg/dL (177 µmol/l) (reference interval: 0.7-1.2 

mg/dL or 60–115 µmol/l) in approximately 50% of APAP-

induced ALF patients, and the levels were higher in non-

survivors compared to survivors [105]. Those data were 

supported by later studies that showed plasma creatinine level 

at admission and serum kidney injury molecule 1 (KIM-1) are 

predictive of poor patient outcome after APAP overdose 

[98,106]. Interestingly, some evidence suggests that chronic use 

of low doses of APAP can increase risk for kidney disease and 

cause analgesic nephropathy [107,108], although that has been 

questioned by findings from very large studies of “healthy” 

individuals who regularly use over-the-counter analgesics including 

APAP [108].   

Proposed mechanisms. Although the nephrotoxicity of APAP 

has been known about for decades, surprisingly few studies 

have explored the mechanisms. Early on, it was thought that 

endotoxemia as a result of failure of the damaged liver to 

eliminate endotoxins from the normal GI flora was responsible 

for the renal damage [104], but results from later studies suggested 

a more direct effect involving reactive metabolites of APAP 

and APAP-protein binding [109]. There are significant species 

differences, and even within-species strain differences, in renal 

metabolism of APAP [110]. In Fischer F344 rats, APAP and 

NAPQI appear to be converted to p-aminophenol (PAP) by  
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deacetylation in the kidney, and PAP can be further metabolized 

to a reactive quinone imine other than NAPQI, possibly by a 

prostaglandin endoperoxide synthase (PGES; aka cyclooxy-

genase, COX) [110-115]. Based on those data, it was initially 

thought that APAP nephrotoxicity was mediated by PAP. 

However, it was later demonstrated that inhibition of 

deacetylation had no effect on covalent protein binding in 

renal microsomes from Sprague-Dawley (SD) rats [116], and 

an antibody against the N-acetyl moiety of APAP-cysteine 

could bind to APAP-protein adducts in the kidneys of mice after 

APAP treatment but not after treatment with p-aminophenol 

[ 117 ]. Furthermore, covalent binding in renal microsomes 

from SD rats can be prevented by the P450 inhibitor 1-

aminobenzotriazole [116], and the nephrotoxicity of APAP in 

mice is reduced by the P450 inhibitor piperonylbutoxide 

[117]. It is also apparent that sex differences in APAP 

nephrotoxicity in mice are due to differences in renal P450s. 

Female mice are resistant to renal injury even at doses of 

APAP that cause hepatotoxicity, and that is likely due to 

hormone-induced differences in P450 expression. Castration 

of male mice reduces APAP metabolism and protects against 

APAP-induced kidney injury [ 118 ], while testosterone in-

jections induce Cyp2e1 and render female mice susceptible to 

APAP nephrotoxicity [ 119 ]. Together, those data strongly 

suggest that APAP nephrotoxicity in mice is mediated at least in 

part by P450s and the same reactive metabolite of APAP that 

causes liver injury. Which species (mouse or rat) and which 

strain (F344 or SD rats) is more relevant for human APAP 

nephrotoxicity is not yet known. PAP and PAP metabolites have 

been detected in urine from humans after APAP ingestion 

[120,121], which may suggest that deacetylation of APAP to 

PAP occurs in humans. However, PAP and APAP metabolism 

are difficult to disentangle. Furthermore, we know that the 

mouse is a better model for the liver injury caused by APAP 

[39]. Aside from cytochrome P450s, results from studies 

using isolated rabbit and human kidney microsomes have 

indicated that a PGES/COX can also convert APAP to 

NAPQI (via a phenoxy radical intermediate) [ 122 ]. In-

terestingly, more recent studies showed that renal injury after 

APAP overdose in mice is exacerbated by free APAP-cysteine 

from APAP-GSH [95,96]. APAP-cysteine generated from the 

breakdown of APAP-GSH in the GI tract and kidneys can act 

as an acceptor of the γ-glutamyl moiety of GSH in the GSH 

cycle, and thereby exacerbate GSH depletion in the kidneys 

[96].  

Overall, it appears that NAPQI formation and protein 

binding are critical, similar to the liver. There is also some 

evidence that APAP can inhibit mitochondrial respiration in 

kidney cells from rodents [123,124]. However, little is currently 

known about APAP nephrotoxicity beyond those results. 

Although it is tempting to assume that the mechanisms are the 

same as in the liver due to the involvement of protein binding 

and mitochondria, there is currently no direct evidence for 

oxidative stress, kinase activation, or the MPT in APAP 

nephrotoxicity.   

Biological relevance of proposed mechanisms. Nephrotoxicity 

is clearly a risk after APAP overdose. Available data suggest 

that protein binding and mitochondrial dysfunction occur in the 

liver after APAP overdose and that the injury is exacerbated by 

glutathione cycling, but much more work is needed to prove 

the importance of those phenomena in APAP nephrotoxicity. 

This is especially important because acute kidney injury is a 

predictor of poor patient outcome after APAP overdose 

[99,106], possibly because it contributes to death after APAP 

overdose through multi-organ failure. The high affinity of the 

PGES for APAP has prompted some to speculate that it is 

responsible for the increased risk of kidney disease after chronic 

low-dose exposure to the drug [122,110,115], but again, the 

occurrence of APAP nephrotoxicity among therapeutic users is 

controversial. We recommend that future research on APAP 

nephrotoxicity be focused on the importance of mitochondrial 

dysfunction and kinase signaling and treatments that could address 

those, as well as mechanisms of renal cell recovery that have been 

demonstrated to be important in other models of acute kidney 

injury [125]. 

4. Pulmonary toxicity 

Evidence. There is evidence for a link between chronic 

APAP exposure at therapeutic doses and respiratory disease. A 

survey of general practice clinic patients in the UK found a 

positive association between frequency of APAP use and signs 

of asthma [20]. The same group also found that regional sales 

of acetaminophen in Europe correlated with incidence of 

respiratory illnesses [126] and that prenatal exposure to APAP 

may be associated with asthma, wheezing and other respiratory 

problems later in life [127]. Since then, other groups have 

obtained similar findings [128-130]. APAP exposure has also 

been associated with development of chronic obstructive 

pulmonary disease [131]. However, the conclusions from these 

studies are controversial. Several possible confounding factors 

have been suggested [132-134]. Among these, indication bias 

(“reverse causation”) is probably of greatest concern. For 

example, children with respiratory infections are more likely to 

be exposed to APAP as a part of normal treatment [135], which 

may lead to a false association between APAP exposure early 

in life and later asthma when in fact the later respiratory 

problems may be a result of the infection or related issues. There 

is some evidence of pulmonary toxicity in rodent models. 

Bronchiolar epithelium necrosis has been observed in mice 

treated with very large doses of APAP [15,16,136], but those data 

are clearly not relevant for the chronic low-dose exposures that 

are thought by some to cause asthma and other lung diseases. 

There is some evidence that low doses of APAP are 

proinflammatory in the lungs [17]. Furthermore, adult mice that 

were exposed to APAP in utero were found to have a greater 

response to an allergic challenge later in life [18]. However, 
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additional work is needed to understand the 

pathophysiological significance of the latter phenomena. 

Overall, there is currently a tentative link between APAP and 

pulmonary disease that requires further investigation.  

Proposed mechanisms. It has been suggested that chronic 

exposure to APAP can deplete GSH in the lungs and that this 

could explain a connection between APAP and respiratory 

diseases if it enhances susceptibility to oxidants, such as reactive-

oxygen species produced by inflammatory cells or even 

environmental oxidants [20]. GSH depletion and increased 

expression of oxidative stress response genes have been 

detected in lungs from mice treated with large, acutely toxic 

doses of APAP and that could suggest oxidative stress [137-

139 ]. APAP-protein binding in the lung has also been 

demonstrated in mice [137,140-142]. In fact, one study found 

that a polymorphism in glutathione-s-transferase (GST) P1 

that reduces its activity was associated with wheeze in 

children exposed to APAP prenatally [129], although a 

conflicting study reported that wheezing and asthma in 

children of mothers who used APAP during pregnancy is greater 

when the mother possesses multiple copies of GSTP1 and/or 

GSTM1 compared with null genotypes [139].  

A more specific mechanism of APAP-induced lung disease 

that has been proposed is neurogenic inflammation. Nassini et 

al. [17] suggested that inflammation develops in the lungs 

after APAP treatment due to activation of the transient 

receptor potential ankyrin 1 (TRPA1) channel in peptidergic 

neurons by NAPQI. They demonstrated that direct treatment 

with NAPQI can enhance Ca2+ uptake in cells expressing 

TRPA1. Importantly, there was also evidence for increased 

TRPA1 signaling and evidence of inflammation in lungs from 

rodents treated intratracheally with NAPQI or either intraga-

strically or intraperitoneally with relatively low doses of 

APAP (15-300 mg/kg). The authors were even able to detect 

sulfhydryl adducts after the 15 mg/kg dose, though it’s not 

clear what effect this had on total GSH levels or if protein 

binding actually occurred.  

Biological relevance and future studies. Although GSH 

depletion has been demonstrated in lungs from mice overdosed 

with APAP, it is not clear if that occurs after repeated exposure 

to APAP at therapeutic doses, which would be more relevant 

for the reported epidemiological connections between APAP and 

chronic lung disease. Moreover, the GSH depletion that has been 

observed in lung is unimpressive: only about 30% of total 

lung GSH is lost even after treatment with a dose as large as 

500 mg/kg [137]. It is possible that the GSH depletion 

selectively occurs in certain cell types in the lungs (e.g. Clara 

cells), in which case the total GSH would not be expected to 

dramatically change; however, covalent protein binding also 

has not been observed except at very high doses [137,140-

142]. The TRPA1 hypothesis has more data to support its 

biological relevance. Unfortunately, the authors of that study 

used multiple models, including cultured cells, rat liver slices, 

isolated guinea pig trachea and mice to perform different 

experiments in the same study [17], and it’s not clear how each 

model is related. Furthermore, there was no assessment of 

pulmonary function in an in vivo model treated with APAP, so 

the physiological consequences of the inflammation are 

unknown. The authors did, however, test the effect of APAP on 

pulmonary insufflation pressure in vivo in guinea pigs and 

reported no change [17]. Thus, the evidence for TRPA1-mediated 

lung damage in animals is preliminary and should be further 

explored. Overall, it is not yet clear if or how APAP causes lung 

disease. We recommend that experiments measuring GSH and 

protein binding in the lungs be repeated in mice using low, 

therapeutic doses to determine if those mechanisms are actually 

relevant for humans. Presently, the most compelling data suggest 

that NAPQI can activate TRPA1 on neurons and lead to 

neurogenic airway inflammation, but a more detailed study 

using only the mouse model, and that includes assessment of 

pulmonary function, is needed to test that.   

5. Endocrine disruption and sexual development 

Evidence. It is critical to evaluate claims regarding long-

term effects of intrauterine APAP exposure because APAP is 

currently the only drug recommended for pregnant women to 

reduce pain and fever. Modestly increased risk of cryptorchidism 

after prenatal exposure to APAP has been reported in humans 

in a few studies [143-145], which suggests some estrogenic or 

anti-androgen activity of APAP. However, the results are 

inconsistent and difficult to interpret together. For example, one 

study examined two patient cohorts and discovered an effect in 

only one of them [145]. Another study found that the risk of 

cryptorchidism was increased in offspring of mothers who used 

APAP for ≥ 4 weeks during pregnancy, but the likelihood of the 

child undergoing orchiopexy (surgical treatment, and therefore a 

surrogate marker of long-term cryptorchidism) was not [144]. 

Another study failed to find an association between APAP 

alone and other measures of androgen exposure, such as penis 

width and anogenital distance (AGD), commonly associated 

with reproductive disorders, despite an association with APAP 

and NSAIDs together [146]. Overall, there does not seem to be 

a clear relationship between APAP exposure during 

development and reproductive effects in humans. Nevertheless, 

several studies using rodent models have indicated a connection. 

One group has reported that intrauterine APAP exposure modestly 

affects AGD in male and female rodents [145,147,148] and 

may affect germ cell proliferation in female mice [148]. 

However, although they claimed to use subtoxic doses, the 

authors treated the animals with 50-350 mg/kg of APAP every 

morning for 7 days. While the maximum recommended dose of 

APAP in humans is approximately 50-60 mg/kg/day, that 

amount is typically divided into multiple smaller doses over a 24 

h period. In fact, it is well known that a single treatment with 

≥150 mg/kg is hepatotoxic in mice, resulting in significantly 

elevated plasma ALT values and evidence of hepatocyte 
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necrosis by histology [149]. It is not surprising that there may be 

developmental abnormalities in offspring of animals that 

suffer liver injury during pregnancy. In fact, the most surprising 

finding from these studies may be that the effects were not 

more pronounced. Adding confusion to the debate, the same 

group recently found that 50 mg/kg/day has no effect on 

masculine behaviors or morphology in a region of the brain 

associated with those behaviors in male offspring [150], though 

the 150 mg/kg/day dose did have an effect. Overall, there is 

currently no clear association between APAP and 

reproductive effects in offspring.  

Proposed mechanisms. APAP does not seem to be directly 

estrogenic [151], so other mechanisms have been proposed. 

One possible mechanism for the suggested endocrine-disrupting 

effects of APAP is altered sex steroid metabolism. Interestingly, 

one research group obtained moderately elevated values for 

total estrogen metabolites in urine from premenopausal 

women who reported high APAP use [152]. The only rodent 

in vivo study to address this issue revealed that plasma 

testosterone decreased after APAP treatment in castrated mice 

with human testis xenografts, which suggests that APAP 

decreases testosterone production in human testes [153]. Finally, 

a few in vitro studies have demonstrated that cytochrome 

P450-mediated steroid metabolism can be altered by APAP 

[154,155], though other studies have provided partially 

conflicting results [ 156 ]. Treatment of an adrenocortical 

carcinoma cell line resulted in increased pregnenolone and 

decreased androstenedione and testosterone in two studies 

[144,157]. Estrone and β-estradiol were also increased by APAP 

[147]. However, another study found no effect of APAP on 

testosterone production in human fetal testis [156]. Another 

mechanism that has been proposed for the possible endocrine-

disrupting effects of APAP is reduced prostaglandin synthesis 

due to cyclooxygenase inhibition. Certain prostaglandin levels 

have been shown to decrease in cultured human fetal testis after 

APAP treatment [156].  

Biological relevance and future studies. Altogether, there 

are limited and conflicting results regarding the endocrine 

effects of APAP. There is some epidemiological evidence for 

modestly increased risk of indirect markers of abnormal sexual 

development after intrauterine exposure to APAP in humans, 

but those data are by no means conclusive. Although one human 

study reported increased urine estrogen in humans after APAP 

use [152], it is unlikely that the modest effect that was observed 

would have a major impact on development. Even the 

evidence for developmental effects of prenatal use of potent, 

direct estrogens like oral contraceptives on sexual 

development in offspring is weak at best [157]. While results 

from some studies using cell culture models do support an 

effect of APAP on hormone metabolism, others have revealed 

conflicting results. Moreover, most of those studies involved 

prolonged treatment (24-72 h) with µM to mM concentrations 

of APAP, which is not consistent with the pharmacokinetics 

of APAP in vivo. Finally, the data from the human testis 

xenograft model are compelling, but the human relevance of 

that model is unclear. Overall, there is currently no strong 

evidence that intrauterine exposure to APAP can significantly 

alter sexual development or reproductive health later in life. 

Before any further research on the endocrine and reproductive 

effects of APAP or the mechanisms involved, we recommend 

that a simple study be performed in which pregnant mice 

receive a low dose of APAP (15 mg/kg) one to four times per 

day for several days and multiple developmental parameters of 

offspring health, including AGD and other measurements of 

reproductive health, is assessed. That will also require an 

evidence-based consensus on what are the most important or 

relevant reproductive health parameters to measure. 

6. Ototoxicity 

Evidence. At least 19 reports of rapidly progressive 

sensorineural hearing loss caused by abuse of APAP/opioid 

combinations have been published [158-160]. In most cases, 

the hearing loss is bilateral, suggesting a systemic cause consistent 

with drug exposure. In vitro studies have demonstrated that 

long-term (≥24 h) exposure to high concentrations (mM) of 

APAP can reduce the number of viable cells in isolated cochlea 

(particularly in the outer hair cells) and cause evidence of 

apoptotic cell death in an auditory cell line (HEI-OC1) that was 

derived from the organ of Corti in the ImmortomouseTM 

model [161] and is generally thought to represent cochlear hair 

cells [3,8]. Interestingly, co-treatment with hydromorphone 

enhanced APAP ototoxicity in these models, though hydromor-

phone or hydrocodone alone did not cause cell death [8]. 

NAPQI was shown to have similar effects [13]. Those data 

suggested that APAP is the primary cause of hearing loss due 

to APAP/opioid abuse. However, no clinical reports of hearing 

loss after overdose of APAP alone have been published. 

Furthermore, the same group published a more recent study 

indicating that APAP does not actually cause cell death in HEI-

OC1 cells, despite evidence of reduced energy metabolism and 

even increased caspase activity [162]. Finally, a recent in vivo 

study in mice found no evidence for hearing loss based on 

auditory brainstem response (ABR) in a clinically relevant 

model of acute APAP overdose [163]. Thus, it seems unlikely 

that APAP by itself causes ototoxicity in humans or mice. 

Nevertheless, a practical clinical problem clearly exists in 

patients treated with opioid/APAP combinations and further 

investigation may be warranted.  

Proposed mechanisms. Kalinec et al. [13] found that APAP 

can cause evidence of oxidative stress in HEI-OC1 cells 12-48 

h after initiation of treatment, but that NAPQI does not have 

this effect. Furthermore, increased endoplasmic reticulum (ER) 

fragmentation was observed in these cells after treatment with 

NAPQI but not APAP [13]. Despite the latter, both treatments 

altered levels of ER stress markers. Based on these findings, the 

authors concluded that APAP and NAPQI exert toxic effects 

through different mechanisms in cochlear cells: APAP ototoxicity 

http://dx.doi.org/10.18053/jctres.03.201703.005


Kennon-McGill and McGill | Journal of Clinical and Translational Research  2017; 3(3): 297-310                                           303 
 

Distributed under creative commons license 4.0          DOI: http://dx.doi.org/10.18053/jctres.03.201703.005  

involves oxidative stress and ER stress, while NAPQI causes ER 

stress without oxidative stress [13]. The only in vivo study of 

APAP ototoxicity to date also revealed that there is oxidative 

stress in cochleae after acute APAP overdose [163]; however, 

no ototoxicity was observed in that study based on auditory 

brainstem thresholds (ABR) [163].  

Biological relevance and future studies. While interesting, 

the results from cell culture studies thus far are questionable. 

First, APAP has a very short half-life in circulation [26]. 

Thus, it is unlikely to persist at the cochlea for ≥ 24 h, as in 

the in vitro experiments described above. Although some 

drugs (e.g. aminoglycosides) may become trapped within the 

cochlear fluid, this is unlikely to occur with APAP because it 

is neutral at physiological pH and readily crosses membranes 

[26]. Next, it is not known if HEI-CO1 cells, or cochlear cells in 

general, express P450s at concentrations sufficient to convert 

APAP to NAPQI. The only study to address that issue 

revealed that mice treated with a hepatotoxic dose of APAP 

had no evidence of GSH depletion or protein binding in 

cochlea [163]. Finally, it is clear that APAP toxicity in vitro 

does not necessarily translate to toxicity in vivo. Many cell 

lines succumb to APAP toxicity through mechanisms that are 

not physiologically relevant. For example, both Hepa 1-6 and 

SK-Hep1 liver cells will die after prolonged exposure to mM 

concentrations of APAP, despite the fact that these cells do 

not form the reactive metabolite of APAP [ 164 , 165 ]. 

Importantly, the primary mode of cell death in these cells was 

found to be apoptosis, which is not a major contributor to 

APAP-induced hepatocyte death in vivo [35,50,70, 166 ]. 

Furthermore, APAP is also toxic to human lymphocytes in 

culture [165], but there is little or no evidence that that is true 

in vivo. Clearly, it is important to realize that cell culture 

studies do not necessarily mimic the in vivo situation. 

Overall, it is clear that APAP/opioid combinations are 

ototoxic in humans, but there is no strong evidence that 

APAP is ototoxic by itself. Future research in this area is 

encouraged, and should focus on hearing loss caused by the 

combination drugs, and should use only in vivo models with 

clear human relevance.  

7. Neurodevelopmental and neurobehavioral disorders 

Evidence. Several groups have claimed that APAP may be 

a cause of autism spectrum disorder (ASD) [7,11,14]. Two major 

pieces of evidence led to that hypothesis. First, it was observed 

that at least some patients with ASD exhibit defective xenobiotic 

sulfation [167]. In fact, when APAP was used as a probe drug 

to assess sulfation capacity, the ratio of APAP-sulfate to 

APAP-glucuronide was lower in severely autistic subjects 

compared to healthy controls [176]. Initially, it was suggested 

that this could lead to poor clearance of, and therefore 

increased exposure to, certain chemicals present in food or in 

the environment that may have neurological effects, but it was 

later proposed that APAP itself might be a problem. Schultz 

et al. [7] suggested that reduced sulfation may lead to increased 

NAPQI formation with neurotoxic effects. Second, it was found 

that diagnoses of ASD began to increase in the 1980s, after the 

CDC issued a warning regarding the risk of Reye’s syndrome 

and birth defects when treating children or pregnant women 

with aspirin, and sales of children’s APAP rose [ 168 ]. 

However, it is unlikely that reduced sulfation would lead to a 

significant increase in NAPQI formation at therapeutic doses of 

APAP. Sulfation is a low capacity route of elimination and is 

already saturated in healthy subjects at pharmacologic doses of 

APAP [ 169 ]. Glucuronidation, on the other hand, is a high 

capacity process and does not appear to be saturable [27]. In 

fact, the hepatotoxicity of APAP is probably not due to 

saturation of Phase II metabolism resulting in greater NAPQI 

formation; the percentage of APAP converted to the reactive 

metabolite is likely the same regardless of dose. Rather, it is 

probably the greater absolute amount of NAPQI that is 

produced that initiates liver injury after overdose [27]. 

Furthermore, the observed correlation between children’s APAP 

sales and ASD diagnoses does not prove causation.  

Nevertheless, several groups have reported results from 

epidemiological studies that seem to show an association between 

APAP exposure early in life and development of ASD 

[7,11,170]. One of the earliest such studies revealed that parents 

of children with autism were more likely to report use of APAP 

after receiving the measles-mumps-rubella vaccine [7]. However, 

it has been pointed out by others that the parents were solicited 

from autism websites and thus were likely to be biased [171]. In 

addition, there is the possibility of recall bias in parents of 

children with autism who are in search of a cause [171]. More 

recent studies have employed more rigorous methods [170]. 

Unfortunately, even those that have marginalized the risk of 

indication bias may still be affected by genetic factors or other 

residual bias [172]. Overall, the only human data available to 

support the idea that APAP causes ASD are from epidemiological 

studies that may be subject to significant bias.  

In addition to ASD, it has recently been suggested that 

antenatal exposure to APAP may cause hyperactivity or ADD / 

ADHD-like behavior in offspring. Liew et al. [7] found an 

association between APAP and these disorders in a large 

prospective cohort study, and their results are supported by data 

from a few other groups [173-176]. However, significant sources of 

bias have been pointed out in three of these studies as well 

[177], and earlier work by Streissguth et al. [178] provided 

conflicting results. Interestingly, one group has even tested the 

association between prenatal APAP exposure and ADD/ADHD-

like behavior in mice and found no evidence to support it [179], 

although it should be noted that there were clear experimental 

deficiencies such as a lack of well-validated endpoints for 

ADD/ADHD in mice and the fact that a positive control is not 

available for comparison. Overall, there is currently no strong 

evidence that APAP causes ADD/ADHD. 

Although the evidence for neurobehavioral effects of APAP 

in humans is poor, multiple studies have demonstrated that 

exposure to relatively low doses of APAP during early development 

can affect behavioral measures in adult mice [12,180]. While it 
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is not possible to make a direct connection between non-

specific behavioral studies in mice and ASD or ADD/ADHD in 

humans, these observations are intriguing and may warrant 

further investigation. Typically, pregnant women are advised 

not to use NSAIDs due to the increased risk of birth defects 

and miscarriage that has been reported in a few studies. As a 

result, most pregnant women rely on APAP to control fever 

and pain. If it can be shown that APAP also poses a 

significant risk of congenital abnormalities, then that may 

result in removal of the only remaining treatment option for 

those patients.    

Proposed mechanisms. The proposed mechanisms by 

which APAP could cause ASD and ADD/ADHD are similar. 

Endocrine disruption, activation of endocannabinoid receptors 

during development [181], oxidative stress and inflammation 

[182] have all been suggested. However, no studies have been 

done to directly test those possibilities. A more straight-

forward hypothesis is that APAP is directly toxic to neurons. 

Posadas et al. [9] tested that by treating rat cortical neurons 

with APAP in vitro and by injecting rats with APAP in vivo 

and measuring neuron death. They demonstrated that APAP 

overdose was moderately toxic to cortical neurons. However, 

the purpose of their study was to determine if large doses of 

APAP (250-500 mg/kg) are neurotoxic, and it is not known if 

typical human doses for therapeutic use (approximately 10-20 

mg/kg) have similar effects. Cell death in APAP-treated 

cultured neurons has also been reported [9], but again most 

cell culture models do not accurately reflect APAP toxicity in 

vivo. Finally, it is not clear exactly how neuron death would 

lead to ASD and ADD/ADHD.  

Biological relevance and future studies. Currently, the 

association between APAP and ASD or ADD/ADHD is based on 

conflicting results from epidemiological studies. No mechanistic 

studies have been performed, and the few mechanisms that 

have been proposed have not been directly tested. In fact, 

there is strong evidence that ASD, in particular, is driven by 

genetics [183], so exposure to APAP or other xenobiotics 

may not be important. Males are far more likely to develop 

ASD, and siblings of children with ASD are at greater risk [183]. 

There is also striking evidence for a genetic component of social 

behaviors associated with ASD, such as viewing of social 

scenes [ 184 ]. Nevertheless, the importance of APAP as a 

treatment option during pregnancy, together with the 

seriousness of ASD and ADD/ADHD, warrants future 

research in this area to enable more definitive conclusions. 

Even a simple study could be performed in which pregnant 

mice receive 15 mg/kg APAP one to four times per day for 

several days and behaviors associated with ASD and 

ADD/ADHD are measured in offspring over time.  

8. APAP toxicity in other tissues or systems 

APAP toxicity has been reported in other tissues, but the 

evidence is limited.  For example, APAP is also known to 

cause ocular opacity or cataracts in mice, but only after direct 

induction of P450 enzymes in ocular tissue [185,186]. It has 

also been suggested that APAP can be cardiotoxic, but this is 

based on case reports with no direct evidence [187]. Currently, 

there is no compelling evidence for clinically-relevant APAP 

toxicity in tissues other than those discussed above.  

9. Conclusions 

It has been 50 years since the first reports of APAP-induced 

liver injury, and we are only beginning to investigate the 

extrahepatic toxicity of the drug in earnest. Renal toxicity after 

APAP overdose is known to occur, but the mechanisms have 

not been fully elucidated. It is also not known if common co-

morbidities like alcoholism or obesity affect that outcome. The 

pulmonary and neuro- toxicity of APAP are more 

controversial. Most data regarding the non-hepatic and non-

renal effects of APAP are from epidemiological studies that do 

not prove causation and frequently suffer from bias and/or 

conflicting results. Published experimental data provide support 

for many of these adverse effects, but too often the data come 

from flawed models. However, we believe that some additional 

research may be appropriate in at least two areas. The sheer 

volume of epidemiological studies that have revealed increased 

risk of lung disease after exposure to APAP early in life and 

the fact that at least one group has reported a plausible 

mechanism based on data from animal models using low doses 

of APAP may warrant further investigation of the pulmonary 

toxicity of chronic APAP use. Also, the fact that APAP is a 

very important drug for pregnant women combined with the 

several rodent studies suggesting adverse neurodevelopmental 

effects in offspring may warrant further investigation of 

neurodevelopmental toxicity to fully evaluate that possibility. 

Overall, however, the data for extrahepatic toxicity of APAP 

are weak and significant changes in clinical or consumer use 

would be not advisable at this time. 
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