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Incomplete understanding of the mechanisms responsible for induction of hibernation prevent translation of 

natural hibernation to its artificial counterpart. To facilitate this translation, a model was developed that 

identifies the necessary physiological changes for induction of artificial hibernation. This model encompasses 

six essential components: metabolism (anabolism and catabolism), body temperature, thermoneutral zone, 

substrate, ambient temperature, and hibernation-inducing agents. The individual components are interrelated 

and collectively govern the induction and sustenance of a hypometabolic state. To illustrate the potential 

validity of this model, various pharmacological agents (hibernation induction trigger, delta-opioid, hydrogen 

sulfide, 5’-adenosine monophosphate, thyronamine, 2-deoxyglucose, magnesium) are described in terms of 

their influence on specific components of the model and corollary effects on metabolism.  

Relevance for patients: The ultimate purpose of this model is to help expand the paradigm regarding the 

mechanisms of hibernation from a physiological perspective and to assist in translating this natural 

phenomenon to the clinical setting. 
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1. Introduction 

Metabolic homeostasis is key to physical function, justifying 

its meticulous regulation and powerful governing mechanisms 

in every living cell. The ability to artificially and reversibly 

reduce metabolism could provide many advantages for 

medicine, sports, and aviation. However, despite a growing 

understanding of our ability to regulate the mechanisms that 

govern metabolism at the cellular level, translation of metabolic 

control in cells to a whole organism has remained beyond our 

reach.  

In nature, reversible states of hypometabolism are a common 

trait. Members of eight species, including a variety of rodents, 

carnivores (bears), and primates (lemurs) are known to exhibit 

a type of hypometabolism [1]. Although biological vernacular 

varies between many different types of hypome- tabolism 

(Figure 1), two types can generally be distinguished within 

animals that have an endogenous thermoregulatory system: a 

deep and a shallow type of hypometabolism. The difference lies 

in the depth of the drop in body temperature (Tb) and the duration. 

Shallow hypometabolism represents a temporary type, as 

exhibited during torpor by e.g., the house mouse, whereas deep 

hypometabolism is a more sustainable type, as is found in e.g., 

the hibernating ground squirrel [1, 2]. 

 

Figure 1. Classification of the different types of hyper- and hypometabolism and the official biological vernacular. Endogenous thermoregulation occurs 

through the modulation of the thermoneutral zone (Ztn) and thermal effectors, whereas exogenous thermoregulation is dependent on the ambient temperature 

(Ta) and exogenous triggers but not the Ztn. 

 
The mechanism(s) responsible for the induction of 

hypometabolism remain(s) controversial [1]. Unfavorable en-

vironmental circumstances appear to be a common denominator 

in hibernating animals, including seasonal cooling, light 

deprivation, and prolonged starvation. However, the use of such 

external triggers to induce artificial hibernation in humans has 

proven to be of no avail. Irrespective of the external cues, an 

internal physiological signal, or perhaps a concerted cascade of 

signals, must initiate, propagate, govern, and sustain 

hypometabolic signaling in vivo. In an attempt to find such a 

signal, much research has focused on (bio)chemical signaling 

during hibernation and its induction, leading to the 

identification of several hypometabolic agents [3-7]. However, 

despite their discovery and extensive research in various animal 

models, none of the identified agents appear to induce a 

hypometabolic state ubiquitously across species, as a result of 

which not a single hypometabolic agent has made it yet to 

(pre)clinical application. Currently, the only metabolic control 

that is clinically employed is forced hypothermia-induced 

hypometabolism, although this type of hypometabolism fails to 

achieve the depth found in natural hibernators and comes with 

challenging limitations.  

In an attempt to expand on current insights into hypome-

tabolism, this review addresses the conditions necessary for the 

induction of hypometabolism and the possible initial 

(biochemical) triggers. Accordingly, a theorem on the induction 

of hypometabolism is presented, whereby the relationship 

between key physiological and environmental factors is 

provided as a framework to explain the physiological cascade 

that leads to a sustainable and reversible state of hypometabo-

lism in mammals. Readers should note that the focus of this 

paper is on mainly the physiological and biochemical conditions 

required for the induction of hypometabolism. Although 

neurological signal relay is key to convey, propagate, and 

sustain a state of hypothermia and hypometabolism, the 

responsible neurological pathways have only been superficially 

addressed. These pathways will be elaborated in more detail in 

a subsequent, separate review.  

http://dx.doi.org/10.18053/jctres.201502.005
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2. A model for hypometabolic induction 

2.1. Control of metabolism through temperature and substrate 

availability 

 A pivotal step in the induction of artificial hypometabo-

lism is gaining control over the most important factors that 

regulate metabolism (Q), namely the availability of substrate (S, 

i.e., oxygen and glucose) and the rate of adenosine triphosphate 

(ATP) production (anabolism, A) and consumption (catabolism, 

C), which are both influenced by the core body temperature (Tb). 

Hence, a direct relationship exists between Tb and Q (Figure 2) 

as well as between S and A (Figure 2). The relationship between 

Tb and Q essentially abides by Arrhenius’ law, which states that 

the chemical (i.e., enzymatic) reaction rate, Q, is reduced as a 

result of lowering of temperature (Equation 1).  

 

 

Figure 2. Substrate and temperature effects on metabolism. The S—Q 

relationship relies on substrate (S) availability to support anabolism (A). 

The Tb—Q relationship is dictated by the Arrhenius equation (Equation 1, 

where k is equal to Q in this model), which governs the relation between 

body temperature (Tb) and chemical reaction speed (Q). Catabolism (C) is 

directly affected by Tb, but not by S. 

 

Equation 1 

Arrhenius equation:   

k    Rate constant (s-1), identical to Q in the proposed 

model (Figure 11) 

A   Prefactor (s-1) 

Ea    Activation energy (J·M-1), potentially affected by 

Rx in the proposed model (Figure 11) 

T   Temperature (K), determined by Tb in the proposed 

model (Figure 11) 

R   Universal gas constant (J·K-1·M-1) 

 
Although the magnitude of Q varies among enzymes, all 

have in common that Q is temperature-dependent and therefore 

relies on Tb. The directly proportional effect of Tb on Q is in turn 

affected by the ambient temperature (Ta), which impacts Tb and 

hence Q through heat exchange (Figure 2). The (Ta—)Tb— Q 

relationship is widely exploited in the clinical setting, as 

exemplified by the contrived reduction in patients’ Tb through 

direct or indirect cooling (e.g., reduction in Ta by means of 

breathing cold air, cutaneous cooling, organ perfusion with a 

cold solution, or intravascular cooling) as a protective strategy 

in surgery [8, 9], neurology [10], cardiology [11], trauma [12], 

and intensive care [13]. The protective effects of mild to 

moderate hypothermia (Tb reduction to ~35-32 °C) have been 

ascribed to lower radical production rates, ameliorated 

mitochondrial injury/dysfunction, reduced ion pump 

dysfunction, and cell membrane leakage, amongst others [14]. 

The majority of these factors is directly related to the rate at 

which chemical reactions proceed, whereby cytoprotection is 

conferred by a Tb-mediated reduction in Q in accordance with 

the Arrhenius equation (Equation 1).  

The generally protective effects of hypothermia notwiths-

tanding, the advantage of clinically forced hypothermia- 

induced hypometabolism is questionable in some instances. At 

mild hypothermia (~35 °C), serum concentrations of nore-

pinephrine start to rise in response to hypothermic stress, 

coagulopathy starts to develop, susceptibility to infections 

increases, and mortality rates are negatively affected [15-17]. 

When the Tb is lowered further to ~30 °C, severe hypothermia- 

related complications may occur, including ventilatory and 

cardiac arrest [14,18]. An even more profound reduction in Tb 

would require mechanical ventilation with extensive monitoring 

and would considerably increase procedural risks. Accordingly, 

in the last five decades, the limit of ~30 °C has not been adjusted 

downward in the clinical setting as much as it has been refined, 

despite of successful animal experiments with much deeper 

hypothermia [19-22].  

The detrimental effects associated with forced deep 

hypothermia reflect the limits of the practical implementation 

of the (Ta—)Tb—Q relationship. It is evident that the 

(Ta—)Tb—Q relationship must be differentially regulated in 

natural hibernators compared to humans. In natural hibernators 

the Tb—Q effects may be integratively mediated by endogenous 

signaling, such as by the release of biochemical agents or by 

hypoxia (both addressed in detail below). Humans essentially 

lack such endogenous pathways and do not exhibit 

hypothermia-related benefits from exogenously administered 

pharmaceuticals or hypoxia, as a result of which Q cannot be 

actively adjusted downward by other pathways than through the 

Tb—Q relationship. The distinctive responsiveness to 

hypothermia between humans and natural hibernators may be 

due to differential neurological and biochemical regulation of 

Tb, both of which act via mechanisms related to thermogenesis 

and heat loss. Thermoregulation and the role of thermogenic 

and heat loss effectors is therefore addressed in the following 

section.  

2.2. Thermoregulation following a shift in the thermoneutral 

zone 

The chief role of thermoregulation is maintenance of Tb to 

support an optimal thermodynamic environment for all 

chemical reactions in the organism, which is around 37 °C in 

humans. Thermogenic control is believed to rely on several 

http://dx.doi.org/10.18053/jctres.201502.005
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neurological pathways, which includes involvement of the 

preoptic anterior hypothalamus (POAH). Together, these 

pathways manage a thermoneutral zone (Ztn) which provides a 

range in which the Tb is to maintain itself, and outside of which 

the Tb is to be adjusted towards the Ztn through the use of 

thermogenic effectors and heat loss effectors (Figure 3).  

 

 

Figure 3. The relationship between the thermoneutral zone and 

temperature. (A) Overview of thermoregulatory processes. The Ta—Tb 

relationship represents heat exchange between ambient (Ta) and body 

temperature (Tb). Information on the Ta is processed and translated into a 

thermoneutral zone (Ztn) through the Ta—Ztn relationship, whereby the Ztn 

maintains Tb by regulating thermal effector activity via the Ztn—Tb 

relationship. (B) Summary of thermal effectors that are mediated by the 

Ztn—Tb relationship. The Ztn activates thermogenic processes (red) when 

the Tb < Ztn and heat loss mechanisms (blue) when the Tb > Ztn.  

 
Although it is difficult to ascertain that a single location 

among the thermoregulatory pathways can have an effect on the 

Ztn, it is generally accepted that the POAH exerts such an effect 

in hibernating and non-hibernating animals based on indirect 

experimental and clinical evidence [23,24]. In humans, 

incidental but selective destruction of the hypothalamic region 

is associated with dysfunctional thermoregulation, as evidenced 

by passive Tb declines to as low as 29 °C [25-29]. Moreover, 

exposure of hypothalamically impaired patients to low Tas 

causes a drop in Tb, whereas the same conditions induce a 

rectifying rise in Tb in ‘control’ subjects [28,30], attesting to 

impaired thermoregulatory capacity in hypothalamically 

afflicted patients. Altogether, these reports provide compelling 

evidence for a temperature integration site in the hypothalamus 

through which management of Ztn and Tb ensures maintenance 

of euthermia.  

On the basis of these findings it can be concluded that 

POAH-affected subjects exhibit a sensory defect between Ztn—

Ta (Figure 3A), as a result of which Tb will approximate Ta in 

the absence of thermoregulation. Contrastingly, healthy subjects 

exhibit a reactive effect between Ztn—Tb, whereby Tb is 

sustained in conformity with the Ztn irrespective of the Ta via 

activation of thermogenic effectors (Figure 3B). Accordingly, 

these data imply that, under normophysiological circumstances, 

Q is mainly regulated by the Ztn via Ztn—Tb—Q such that the 

optimal thermodynamic conditions (37 °C) are at all times 

maintained. POAH-mediated thermoregulation also takes place 

in rodents that are capable of entering a state of torpor. 

Corroboratively, selective infarction of the anterior hypothala-

mus in rats coincides with the inability to regulate Tb, indicating 

destruction of pathways that govern the Ztn and abrogation of 

thermoregulatory function [31].  

As opposed to humans, Ztn management in smaller animals 

(e.g., rodents) may veer from a euthermic regime in some 

species due to specific changes in environmental conditions. 

One exemplary condition is hypoxia, which is addressed in 

section 2.3 to illustrate the relationship between S (oxygen) and 

Q.  

Before moving to the S—Q relationship in the context of 

hypoxia, however, it is imperative to address hypothermia as a 

function of an organism’s surface:volume ratio, or the ease with 

which heat exchange between Tb—Ta can proceed. Small 

animals have a high surface:volume ratio compared to large 

animals, which allows for faster heat dissipation and results in 

subsequent lowering of Tb when exposed to cold environments. 

A high convective efficiency is essential for the induction of 

hypothermia, and is dependent on the heat loss properties such 

as the animal’s skin phenotype, breathing pattern, the extent of 

skin exposure, and the animal’s posture and physical activity 

[32]. In addition to such effects, small animals require a higher 

metabolic rate than larger animals to sustain their Tb (Kleiber’s 

law [33]), which causes small animals to become more easily 

affected by low Tas. As a result, it takes considerably less time 

to lower the Tb and coincidentally the Q of a mouse compared 

to those of a human. This effect is reflected in the strong 

correlation between the ability and depth of hibernation and 

surface:volume ratio, which indicates that virtually all 

hibernating animals are small (i.e., high surface:volume ratio) 

and that increased body size is associated with a decreased 

depth of the Tb drop during hibernation/torpor [34]. Hence it 

appears that environmental/biochemical modulation of 

metabolism is more prevalent in small animals and subject to 

the effectiveness of Tb—Ta heat exchange.  

2.3. Hypoxia-induced hypometabolism: aligning anabolism 

with catabolism  

The relationship between S and Q is to an extent regulated 

by the intracellular oxygen tension insofar as oxygen constitutes 

a vital S for Q (Figure 4). During hypoxia, Q is impaired 

because of insufficient oxygen availability for oxidative 

phosphorylation, resulting in reduced cytochrome c oxidase 

function [35] and cessation of ATP production (A). Under 

hypoxic but normothermic conditions, the ATP consumption 

rate (C) can be suppressed to match the ATP production rate, but 

only to a limited extent and for a short time [36]. In order to 

survive during a long period of normothermic hypoxia, an 

organism’s metabolism must remain active to fuel metabolically 

vital processes, which include protein synthesis (25-30% of 

total ATP consumption), ion homeostasis (23-36%), 

gluconeogenesis (7-10%), and ureagenesis (3%) [37]. The 

limited production yet active consumption of ATP during 

normothermic hypoxia therefore forces the organism to initially 

http://dx.doi.org/10.18053/jctres.201502.005
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switch to anaerobic respiration (Pasteur effect) - a switch that 

imposes limits on the maximally tolerable duration of 

hypoxia/anoxia due to inefficient ATP yields from glycolysis 

and the production of toxic metabolites  

 

Figure 4. Effects of hypoxia on metabolism. Metabolism (Q) is controlled 

by substrate (S) availability. Lowering of oxygen availability (hypoxia) 

directly inhibits anabolism (A, i.e., ATP production) but not catabolism (C, 

i.e., ATP consumption). Consequently, the metabolic tolerance of hypoxia 

is limited by the extent to which C can be sustained in the absence of A.  

such as lactic acid. 

In several non-hibernating species, exposure to a prolonged 

period of hypoxia concurs with regulated hypothermia and 

hypometabolism, suggesting that hypoxia-mediated thermo-

genic and metabolic suppression constitutes a protective/ 

coping mechanism for such life-threatening conditions [38-41]. 

This hypoxic stress response, illustrated in Figure 5, is in fact 

an effective survival mechanism in that the catabolic rate is 

realigned with the limited anabolic rate caused by hypoxia, 

which is in part achieved by the lowering of Tb through the 

inhibition of thermogenesis and activation of heat loss 

mechanisms (explained in section 2.4). In that respect, the 

hypoxic stress response essentially embodies a pre-programmed 

manifestation of Arrhenius’ law. During this process, the Ztn 

must either shift downward or be biochemically inhibited in 

order to resolve the incongruity between the hypothermic Tb and 

the euthermically ranged Ztn. A reduction in Tb (and 

consequently Q) resulting from a downward adjustment of the 

Ztn is referred to as anapyrexia (Figure 6A), as opposed to 

pyrexia, which comprises an elevated Tb as result of an elevated 

Ztn (i.e., fever). How anapyrexia is mediated under hypoxic 

conditions in animals is elusive. The effect of anapyrexia on 

thermoregulatory effectors, on the other hand, is not and 

provides useful information on the hypoxia-anapyrexia 

signaling axis.  

 

Figure 5. Induction of hypometabolism by hypoxia in mice. An experiment was conducted that exemplifies the reduction in temperature (measured with a 

thermal camera) and metabolism (measured by exhaled CO2 levels) following exposure of mice (Mus musculus) to hypoxia. The mouse was placed in an 

air-tight container with an inlet coupled to a gas cylinder containing either an O2:N2 mixture of 21% O2 (to induce normoxic conditions, N) or an O2:N2 

mixture of 5% O2 (to induce hypoxic conditions, H). The container was purged with the normoxic or hypoxic gas mixture at a flow rate of 1 L/min. The 

container also had a gas outlet that was coupled to a CO2 sensor (model 77535 CO2 meter, AZ Instrument, Taichung City, Taiwan). After a 30-min 

stabilization period under normoxic conditions, hypoxia was induced for 3.5 h, after which the container was changed back to normoxic conditions and the 

mouse was allowed to recover for an additional 3 h. The ambient temperature (Ta) was maintained at 23.4 ± 0.3 °C. During the experiment the mouse was 

imaged with a thermal camera (Inframetrics, Kent, UK), whereby dark pixels indicate low temperatures and light pixels indicate high temperatures. The 

frame designations correspond to the lettering in the CO2 production chart to indicate the time point and phase at which the images were acquired. Upon 

induction of a hypoxic environment, the body temperature (Tb) of the mouse dropped (B), as evidenced by the decreased Tb-Ta contrast between 0.5 h and 

4 h. Following restoration of normoxic conditions (C), the animal’s Tb gradually returned to baseline levels. The right panel shows the CO2 profile during 

normoxia and hypoxia, whereby the hypoxic phase is clearly associated with reduced levels of exhaled CO2, which constitutes a hallmark of hypometabolism. 

http://dx.doi.org/10.18053/jctres.201502.005
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Figure 6. Hypoxia-induced hypometabolism via anapyrexic signaling. (A) 

The onset of hypoxia, i.e., low substrate (S = oxygen) levels, is proposed 

to modulate the thermoneutral zone (Ztn) downward via a so-called hypoxic 

link. The lowering of the Ztn inhibits thermogenesis and activates heat loss 

mechanisms through the Ztn—Tb relationship, allowing heat exchange 

between body temperature (Tb) and ambient temperature (Ta) to occur. The 

consequent reduction in Tb slows down both anabolic (A) and catabolic (C) 

metabolism (Q) as described in Figure 2. (B) Pathways leading to 

anapyrexia via the Rx—Ztn and S—Ztn relationships. Although this 

relationship is exemplified for hypoxic conditions, where S comprises 

oxygen, it may also apply to conditions where another S is reduced, such 

as glucose during periods of starvation. Prolonged hypoglycemia is known 

to also induce hypometabolism, as addressed in section 2.5.4. A direct 

anapyrexic pathway is suggested for Rx—Ztn, where a neuroactive agent 

such as delta-opioids directly lowers the Ztn (section 2.5.5). Alternatively, 

an Rx such as H2S can also affect the Ztn without affecting S availability by 

inducing hypoxic signaling through oxygen sensors such as carotid bodies 

(section 2.5.1). 

 

2.4. The effect of hypoxia-induced anapyrexia on 

thermoregulatory effectors 

Hypoxia-induced anapyrexia is found in a large number of 

species, including mice [39,42], hamsters [43], rats [38,44], 

pigeons [45,46], dogs [42,47], primates [41], and man [42], and 

manifests itself when the organism is concurrently exposed to 

low Ta. A low Ta appears to be a prerequisite for an anapyrexic 

response to hypoxia, as an anapyrexic response during hypoxic 

euthermic conditions is absent. The main question, however, is 

how hypoxic signaling decreases the Ztn to facilitate 

hypothermia.  

The answer may entail an effect of hypoxia on thermogenic 

effectors (Figure 6A), such as BAT and shivering (Figure 3B). 

The inhibitory effects of hypoxia on the intensity of cold-

induced BAT activity include a lower afferent blood flow to 

BAT [48], reduced sympathetic nerve activity [49], desensitized 

response to norepinephrine (a potent BAT activating agent 

[50,51]) [52], and can eventually lead to a reduction in BAT 

mass during prolonged exposure to hypoxia [53,54]. In addition, 

hypoxia results in the inhibition of shivering upon exposure to 

low Ta compared to normoxic controls in mice, dogs, and man 

[42]. Moreover, some species further reduce their Tb through 

changes in behavioral patterns, such as disengagement from 

cold-induced huddling [55] or exhibiting an explicit preference 

for cooler environmental temperatures [56].  

Considering these effects, it can be hypothesized that 

hypoxia either acts directly on BAT and muscle tissue (shivering) 

or indirectly inhibits these thermogenic effectors via central 

regulation, the Ztn. The latter is a more likely mechanism of 

action since anapyrexic signaling controls both BAT and 

shivering in order to facilitate hypothermia. Poor blood 

oxygenation, a result of exposure to hypoxia, is relayed to the 

brain via the carotid bodies, which is described by a Rx—Ztn 

relationship (Figure 6B). CBs are oxygen sensing bodies located 

alongside the carotid artery that contain oxygen-sensitive 

chemoreceptors through which they provide essential neuronal 

feedback on the arterial partial oxygen pressure [57]. Excitation 

of the CBs by reduced oxygen levels during hypoxia possibly 

induces lowering of the Ztn to activate heat loss effectors (Figure 

3B) so as to facilitate the induction of hypothermia with the sole 

purpose of aligning ATP consumption rates with ATP 

production rates as part of the survival response to stress 

conditions (section 2.3). Naturally, this response prevails in 

species that have a sufficiently high Ta—Tb convective 

efficiency to allow rapid manifestation of hypothermia and 

corollary reduction in Q (section 2.2), given that sustenance of 

life by anaerobic metabolism is time-limited. CBs are therefore 

an important instrumental component of the ‘hypoxic link’ in 

smaller species. 

The existence of a ‘hypoxic link’ to the Ztn (Figure 6) has 

been suggested [58] but lacks direct evidence other than the 

previously mentioned changes in thermal effectors. This link 

implies that, under cold but normoxic conditions, the Ztn 

enforces an array of physiological tools that coordinate a 

thermogenic response, such as shivering, activation of BAT, 

vasoconstriction, and piloerection (Figure 3B). Under hypoxic 

conditions, however, these thermogenic responses are 

dampened or even absent and coincide with activation of heat 

loss effectors such as vasodilation, sweating, and panting 

(Figure 3B) [58]. Direct measurement of changes in the Ztn 

range would be useful in substantiating the ‘hypoxic link.’ 

Unfortunately, due to incomplete knowledge of Ztn functionality 

and technical difficulties related to reaching the neural pathways 

involved, it is currently very difficult to directly measure the 

range of the Ztn or changes therein.  

In summary, hypoxia (low S levels) leads to hypometabolism 

potentially by signaling anapyrexia through CBs, thereby 

allowing the body to cool via the S—Ztn—(Ta—)Tb—Q 

relationship. The hypoxia-induced anapyrexic component 

provides an advantage over the Tb—Q relationship in that the 

anapyrexia allows the Tb to drop below normothermia, 

preventing the stress response that would otherwise be needed 

to keep the body normothermic. Nevertheless, it is unlikely that 

these pathways constitute all necessary conditions for the 

induction of natural hibernation. A closer look at (bio)chemical 

agents (Rx) that have the ability to induce or mimic ‘anapyrexia-

driven hibernation’ present additional pathways, namely 

through their effect on S availability, the relay of S availability 

to the Ztn, and through direct effect on Ztn.  

http://dx.doi.org/10.18053/jctres.201502.005
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2.5. Pharmacological agents and induction of artificial 

hypometabolism   

Induction of hypometabolism in natural hibernators normally 

occurs in response to environmental triggers such as low Ta and 

light and/or food deprivation. The internal (bio)chemical trigger 

responsible for the subsequent propagation of this signal is key 

to understanding the hibernation process. It has been suggested 

that a yet to be characterized endogenous molecular compound, 

referred to as hibernation induction trigger (HIT), is responsible 

for inducing hibernation in vivo [59,60] via the Rx—Q(—Tb)  

relationship, whereby the drop in Tb is arguably a consequence 

of the reduced Q by the HIT (Figure 7). It should be noted that 

this mechanism would differ fundamentally from anapyrexic 

signaling, which requires Ztn downmodulation and subsequent 

Ta—Tb equalization as a precursor event for hypometabolic 

induction (Figure 6). In an effort to identify the HIT, different 

endogenous compounds have been investigated that have 

potential to account for or mimic the effect of the HIT, including 

H2S [3], 5’-adenosine monophosphate (5’-AMP) [61], 

thyronamines (TAMs) [6], 2’-deoxyglucose (2-DG) [4], and 

delta-opioids (DOPs) [5, 59].  

 
 

Figure 7. The effect of hibernation induction trigger on metabolic activity. It 

has been suggested that metabolism (Q) may be directly inhibited by 

pharmacological agents (Rx) such as hibernation induction trigger (HIT) via 

inhibition of anabolism (A) and/or catabolism (C). It should be underscored that, 

based on the information presented in sections 2.2 and 2.4, this pathway is 

unlikely to occur in the absence of hypothermic signaling via Ztn 

downmodulation. 
 

Although induction of a hypometabolic state is a shared trait 

of these agents, each is associated with a different pattern of 

physiological effects. The physiological effects related to 

hibernation, as summarized in Figure 8, are primarily found in 

small animals (Figure 8, outer ring) and not so much in large 

animals (Figure 8, inner ring). The high incidence of 

hypometabolic effects in small animals suggests that part of the 

Rx mechanism may rely on anapyrexia according to the Rx—

(S)—Ztn—Tb—Q relationship described in Figure 6, and 

underscores the importance of the surface:volume ratio (section 

2.2). Consequently, the currently identified hypometabolism-

inducing agents are addressed in relation to their direct 

anapyrexic properties (Rx—Ztn), their indirect anapyrexic 

properties (Rx—S—Ztn), or their substrate affecting properties 

(S—A).  

2.5.1. Hydrogen sulfide 

Exposure to H2S consistently produces a hypometabolic state 

in small animals such as mice and rats (Figure 8, outer ring) 

[3,62-66]. However, the use of H2S in larger animals such as 

pigs [67-70], sheep [65], and heavy rats [71] has failed to induce 

a hypometabolic response (Figure 8, inner ring). The current 

mechanistic paradigm of the hypometabolic effect of H2S is 

based on its high membrane permeability and direct inhibitory 

effect on cytochrome c oxidase in the electron transport chain 

(i.e., through the Rx—A relationship) [72,73]. However, 

increasing evidence indicates the hypometabolic effects are the 

result of hypoxic signaling. For example, endogenously 

produced H2S is necessary for CBs to signal hypoxia [74]. 

Exogenously applied H2S, via a soluble NaSH precursor, can 

mimic the production of this hypoxic signal in vitro [75], 

suggesting the utilization of the ‘hypoxic link’ (Rx—Ztn) by H2S 

(Figure 6B). This is supported by the observed dichotomy 

between H2S-induced effects in small versus large species, 

where H2S produces hypometabolic effects in small species but 

not in larger species (Figure 8). The Rx—Ztn—Tb—Q 

relationship is dependent on a high Ta—Tb convective 

efficiency; a property that prevails strictly in small species due 

to their high surface:volume ratio (section 2.2).   

2.5.2. Adenosine monophosphate 

Intraperitoneal injections of 5’-AMP have been shown to 

induce an artificial hypometabolic state in mice and rats as 

evidenced by a profound drop in Tb (Figure 8) [61,76-78]. The 

putative contention is that intraperitoneal administration of high 

5’-AMP concentrations (e.g., 500 mg/kg) lead to extensive 5’-

AMP uptake by erythrocytes [79], after which the high 

intracellular levels of 5’-AMP drive the adenylate equilibrium 

(ATP + AMP  2 ADP) towards production of ADP, thereby 

depleting erythrocyte ATP levels [76,77]. As a result, 

erythrocyte 2,3-disphosphoglycerate is upregulated, limiting 

the binding of oxygen to hemoglobin’s oxygen binding sites 

(referred to as oxygen affinity hypoxia) [76]. In addition to the 

already impaired oxygen transport, the severe cardiovascular 

depression following 5’-AMP administration has the potential 

to further exacerbate this hypoxic state (referred to as 

circulatory hypoxia) [78]. Although there is no conclusive 

evidence that these types of hypoxia have the ability to induce 

an anapyrexic state, the generally pervasive hypoxic state likely 

uses the S—Ztn—Tb(—Ta)—Q relationship (Figure 6A) to 

induce hypometabolism through CB signaling. 

More recent studies have implicated a direct 5’-AMP signal 

transduction route to the central nervous system in seasonal 

hibernators, culminating in the induction of torpor [80-83]. 5’-

AMP signaling occurs via the A1 adenosine receptor (A1AR), 

which is ubiquitously distributed throughout all tissues, but not 

the A2aAR or A3AR receptors. In the brain, A1AR signaling 

leads to deceleration of metabolic rate and induction of a torpor 

state in arctic ground squirrels [84]. In this species, 

intracerebroventricular administration of the A1AR antagonist 
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Figure 8. Physiological effects of hibernation inducing agents. Overview of physiological effects in response to 2-deoxyglucose (2-DG), 5’-adenosine monophosphate 

(5’-AMP), hydrogen sulfide (H2S), hibernation induction trigger (HIT), delta-opioid (DOP), and thyronamine (TAM). Each effect is represented by a black dot 

(lowering of value), transparent square (equal value), or black triangle (rise of value). The effects are stratified according to the size of the animal, from outer ring to 

inner ring these are: < 0.1 kg (e.g., mouse), 0.1-1 kg (e.g., rat), 1-10 kg (e.g., macaque) and > 10 kg (e.g., pig). The inner white ring indicates the respective reference 

(number) and species (letter). Animals: A, house mouse (Mus musculus, Linnaeus), B, deer mouse (Peromyscus maniculatus, Wagner); C, djungarian hamster 

(Phodopus sungorus, Pallas); D, common rat (Rattus novergicus, Berkenhout); E, thirteen-lines ground squirrel (Spermophilus tridecemlineatus, Mitchill); F, domestic 

dog (Canis lupus familiaris, Linnaeus); G, rhesus macaque (Macaca mulatta, Zimmermann) or southern pig-tailed macaque (Macaca nemestrina, Linnaeus); H, 

domestic pig (Sus scrofa domesticus, Erxleben); I, sheep (Ovis aries, Linnaeus). The physiological parameters include: Tb, core body temperature; VO2, oxygen 

consumption; M, motion; RR, respiratory rate; HR, heart rate; U, urine production; BP, blood pressure; RQ, respiratory quotient; CO, cardiac output; CO2, carbon 

dioxide production; PP, pulmonary pressure. All parameters are expected to be reduced during hypometabolism.   
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cyclopentyltheophylline reversed spontaneous entrance into 

torpor during hibernation season, whereas administration of the 

A1AR agonist N(6)-cyclohexyladenosine induced torpor [82]. 

Later studies confirmed the manifestation of 5’-AMP-driven 

torpor in non-hibernators, including the mouse [80] and rat [83], 

suggesting that the hypothermia- and hypometabolism-inducing 

potential of 5’-AMP is pleiotropically applicable across species. 

Although the signaling is of more direct neurochemical nature 

compared to the hypoxic signaling, the S—Ztn—Tb(—Ta)—Q 

relationship (Figure 6A) also holds for the 5’-AMP-A1AR 

signaling axis. 

As indicated previously, the depth of the hypometabolic 

response is dependent on the Tb—Ta convective efficiency 

(section 2.2). This is further supported by the extent of the drop 

in Tb that is observed in 5’-AMP-treated mice, which is 

proportional to the difference between Tb and Ta (i.e., lower Tas 

induce a greater drop in Tb), demonstrating the Tb—Ta 

dependency [76].  

2.5.3. Thyronamines 

TAMs are a thyroid hormone-derived group of compounds 

of which currently nine structural analogues have been 

identified [6]. Contrary to the structurally similar metabolism-  

enhancing thyronines (T3 and T4), exposure to TAM analogues 

triggers a transient Tb depression in small animals, epitomizing 

the induction of a hypometabolic phase (Figure 8) [6,85-88]. 

Although earlier studies in a canine model presented 

contradictory evidence with respect to metabolic effects 

compared to later studies (Figure 8, cardiac output), it is likely 

that this was a result of differences in synthesis methods and 

compound purity [87,89]. Nevertheless, the metabolic effects of 

TAMs remain obscure, regardless of the synthesis method.  

Both in vivo and ex vivo studies have found the physiological 

effects of TAMs to be mainly cardiogenic in nature, producing 

severe hemodynamic depression, bradycardia, hypotension, and 

reduced cardiac output [6,85,90]. These effects result in reduced 

oxygen levels (affecting the Rx—S—Ztn relationship, Figure 6) 

by lowering the extent of blood oxygenation in accordance with 

Fick’s principle, which describes an inverse relationship 

between cardiac output and oxygenation (circulatory hypoxia) 

[91, 92]. Although the effect of circulatory hypoxia on the Ztn 

has not been demonstrated, the presence of hypoxia in the 

broader sense may support the implication of the S—Ztn—Tb(—

Ta)—Q relationship (Figure 6A) as a basis of the observed 

hypometabolism in smaller animals.   

Given the magnitude of the hemodynamic collapse in small 

species, TAMs may additionally render the animal motionless 

(Figure 8, motion), which would facilitate a greater rate of 

thermal convection (Tb—Ta) and therefore accelerate the 

consequent reduction in Tb and Q (Figure 2).  

2.5.4. Deoxyglucose 

In addition to oxygen, S can also comprise glucose, as 

evidenced by the induction of a hypometabolic state upon 

glucose deprivation in hamsters and various types of mice [4, 

93-95]. Shortage of food, and with that the ability to use glucose 

as energy substrate, has the potential to induce hypometabolism 

or alter its depth [94-96]. This principle has been demonstrated 

in hamsters using 2-DG, a glucose analogue that cannot undergo 

glycolysis as a result of the 2-hydroxyl group, which causes the 

animals to enter a hypometabolic state [4,93]. The 

hypometabolic response to 2-DG, measured by the drop in Tb, 

is reflective of the S—A relationship (Figure 4). Currently there 

is no evidence that supports the S—Ztn pathway for 2-DG.  

2.5.5. Delta-opioids 

Isolation and characterization of the HIT found in serum of 

hibernating woodchucks and squirrels revealed a resemblance 

to D-Ala-D-Leu-5-enkephalin, a non-specific DOP receptor 

agonist [5,97]. Consistent with this characterization, DOPs 

induce a hypometabolic state of similar depth as the HIT, 

whereas mu- or kappa-opioid receptor agonists show no effect 

[97,98]. The involvement of opioid receptors is further 

substantiated by the inability of DOP to induce  hypometaboli-

sm upon exposure to naloxon, a non-specific opioid receptor 

antagonist [99-102]. These findings raise the question whether 

DOPs make use of a direct Rx—Q relationship or act via the 

Rx—Ztn (Figure 6). Growing evidence suggests the latter, as 

delta-opioids appear to be directly involved in hypoxic 

signaling. In mice, exposure to hypoxia has been suggested to 

decrease Ztn via delta-1-opioid receptor agonism [103-106]. 

Other studies have suggested that the delta-2 opioid receptor 

rather than a delta-1 opioid receptor is responsible for the effects 

on the Ztn [107-109], supported by the limited presence of delta-

1-opioid receptors in the hypothalamic region [110,111]. 

However, in both cases the preferred pathway to Ztn modulation 

appears to involve a direct Rx—Ztn relationship.  

2.6. Pharmacological agent properties and the feedback loop 

As demonstrated by the different mechanisms discussed in 

the previous section, Rx can affect Q via three potential 

pathways, namely via Rx—Q(—Tb) (Figure 7, suggested for 

HIT), via Rx—S—Ztn—Tb—Q (Figure 6, suggested for H2S, 5’-

AMP, TAM, and 2-DG), and via Rx—Ztn—Tb—Q (suggested 

for DOP). However, irrespective of the hypometabolic pathway, 

it is unlikely that the systemic release of a single Rx accounts 

for the hypothermic/hypometabolic induction process. Instead, 

as is the case in many biochemical pathways, it is more probable 

that the induction of hypometabolism is governed by a signal 

amplifying feedback loop (Figure 9).  

With respect to the model, the ideal properties of an Rx 

regarding its regulatory function of the feedback loop 

encompass 1) endogenous production and/or release during 

induction of hibernation, 2) inhibitory effects on both A and C, 

3) downregulatory effect on Ztn, 4) equal distribution throughout 

the body, and 5) availability of agonists and antagonists to 

accelerate and abrogate Rx-mediated signaling, respectively. 

Although currently there is no sound evidence for the existence 

of an Rx feedback loop, such a mechanism is theoretically 
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necessary to propagate a hypometabolic signal in vivo. 

Consequently, a mechanistic framework for such a feedback 

loop will be elaborated for magnesium (Mg2+), which appears 

to play an important role in hibernation across different species. 
 

 

Figure 9. Signal amplifying feedback loop during hypometabolic induction. 

Theoretically, lowering of the body temperature (Tb) could be part of a feedback 

system that triggers the release of a metabolism inhibiting agent (Rx) capable of 

further lowering metabolism (Q) via direct inibition of anabolism (A) and/or 

catabolism (C). This process is embodied by the Tb—Rx— Q relationship. 

 

Induction of hibernation coincides with a change in serum 

Mg2+ concentration (Figure 10). Serum Mg2+ levels increase by 

an average of 1.6-fold upon induction of hibernation in different 

species compared to their summer active state, which is a 

considerably higher increase than observed for other 

electrolytes. The release of Mg2+ into the circulation occurs 

from storage pools that have formed prior to induction of 

hibernation in cells that comprise muscle (Figure 10) and skin 

tissue [112, 113]. The translocation of Mg2+ from tissue to blood 

and subsequent systemic distribution is in conformity with the 

first Rx property, i.e., the release of an endogenous agent during 

the induction of hibernation.  

In regard to the second property, Mg2+ exerts an inhibitory 

effect on Q, affecting both A and C. Mg2+ acts as a necessary 

co-factor in over 300 enzymatic reactions [138]. When the Mg2+ 

concentration exceeds the saturating concentration required for 

occupying all substrate binding sites, Mg2+ becomes an inhibitor 

of enzymatic activity [138]. The inhibitory properties of Mg2+ 

are not limited to the inhibition of A, such as reduction of state 

III respiration (ADP-stimulated respiration) upon exposure to 

Mg2+ [139], but also include inhibition of C, such as reduction 

of Na/K-ATPase activity [140]. In addition, Mg2+ inhibits ion 

channels, such as the NMDA receptor ion channel and voltage 

gated ion channels [141-143]. Although inhibition of A and C 

are essential in sustaining a prolonged state of hypometabolism, 

as occurs during hibernation, this Rx property has been largely 

ignored in reports on conventional hibernation-inducing Rx 

agents (i.e., H2S, 5’-AMP, TAM, 2-DG, and DOP).   

 
Figure 10. Electrolyte changes during induction of natural hibernation. 

Analysis of blood levels of magnesium (Mg2+, serum n = 23, muscle n = 9), 

calcium (Ca2+, serum n = 19, muscle n = 5), sodium (Na+, serum n = 16, 

muscle n = 6), potassium (K+, serum n = 25, muscle n = 9), and chloride 

(Cl−, serum n = 9, muscle n = 3) from summer active state to hibernation 

(< 1, reduction upon induction into hibernation; 1, no change; > 1, increase 

in electrolyte concentration). Black bars correspond to serum electrolyte 

levels, grey bars indicate electrolyte levels in muscle tissue. Animals 

included in this figure are: European hedgehog (Erinaceus europaeus, 

Linnaeus) [114-116], long-eared hedgehog (Hemiechinus auritus, Gmelin) 

[117], golden hamster (Mesocricetus auratus, Waterhouse) [118-122], 

common box turtle (Terrapene carolina, Linnaeus) [123], pond slider 

(Trachemys scripta, Thunberg) [123], painted turtle (Chrysemys picta, 

Schneider) [124-127], European ground squirrel (Spermophilus citellus, 

Linneaus) [128], thirteen-lined ground squirrel (Spermophilus 

tridecemlineatus, Mitchill) [121, 122, 129], groundhog (Marmota monax, 

Linneaus) [130, 131], yellow-bellied marmot (Marmota flaviventris, 

Audubon & Backman) [132], Asian common toad (Duttaphrynus 

melanostictus, Schneider) [133], little brown bat (Myotis lucifugus, 

LeConte) [122, 134, 135], big brown bat (Eptesicus fuscus, Palisot de 

Beauvois) [122;134], American black bear (Ursus americanus, Pallas) 

[122], common musk turtle (Sternotherus odoratus, Latreille) [136], desert 

monitor (Varanus griseus, Daudin) [137]. Statistical analysis was 

performed in MatLab R2011a. Intragroup analysis of serum versus muscle 

electrolyte levels (Mann-Whitney U test: p-value): Mg2+, p < 0.001; Ca2+, 

p = 0.395; Na+, p = 0.299; K+, p = 0.067; Cl−, p = 0.315. Intergroup analysis 

of serum electrolyte levels, indicating statistical differences (Kruskal-

Wallis test): Mg2+ versus Ca2+, Na+, K+, and Cl−, (p < 0.05).  

 
The third property of an Rx is its downward adjusting effect 

on the Ztn. In case of Mg2+ there appears to be conflicting  

evidence; intracerebroventricular perfusion with a solution 

containing a supraphysiological concentration of Mg2+ does not 

result in a hypothermic response in hamsters [144], rats [145], 

cats [146-148], and primates [149, 150] but does result in a 

hypothermic response in pigeons [151], dogs [152], and sheep 

[153]. However, with this perfusion approach it cannot be 

guaranteed that intracerebroventricular perfusion solely 

affected the neural pathways involved in thermoregulation. A 

more accurate assessment can be made on the basis of the 

thermal effectors, in which case Mg2+ exerted an inhibitory 

effect on shivering in cold-exposed dogs [154], reduced post-

anesthetic shivering in patients [155-157], lowered the cold-
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induced shivering threshold in healthy human subjects [158], 

and promoted heat loss effectors in rats [159]. Essentially, these 

reports constitute indirect evidence for the Ztn lowering property 

of Mg2+, which is manifested through the activation of heat loss 

mechanisms and inhibition of thermogenic mechanisms (Rx—

Ztn—Tb, Figure 6). 

Fourth, an Rx must distribute throughout the entire body. 

Although self-evident, this property is often omitted in common 

theories on the induction of hibernation by pharmacological 

agents. Heterogeneously distributed receptors of an Rx deter 

widespread propagation of hypometabolic signaling, and 

instead support hypometabolic signaling through an interposed 

effect such as the lowering of the Ztn (e.g., DOP) or the 

availability of S (e.g., TAM). The systemic distribution of Mg2+ 

is unclear, but is expected to be ubiquitous given the role of this 

cation in many enzymatic reactions, including in the 

hexokinase-mediated conversion of glucose to glucose 6-

phosphate, which occurs in every somatic cell type as part of 

sugar metabolism.  

Finally, it is important that an Rx is sensitive to stimulation 

and inhibition for the induction and abrogation of hypome-

tabolic signaling, respectively. The natural factors that trigger 

hibernation include lowering of Ta and dietary change, both of 

which are able to increase plasma Mg2+ via cold-stimulated 

muscular and dermal release of Mg2+ that is stored during the 

pre-starvation diet period [160]. The subsequent rise in plasma 

Mg2+ can promote inhibition of thermogenic activity and 

activation of heat loss mechanisms by lowering of the Ztn, 

potentiating heat exchange (Ta—Tb). In addition, direct effects 

on shivering via Mg2+-mediated inhibition of neuromuscular 

transmission facilitates lowering of Tb [161]. The consequent 

cooling releases more Mg2+ stored in muscles and skin, further 

adding to the increase in serum Mg2+ through a positive 

feedback loop. As discussed in section 2.2, a feedback loop of 

this type would be most efficient in small animals due to their 

high body surface:size ratio and result in a less profound Tb drop 

in larger animals.  

2.7. Hypothermia and hypometabolism research and clinical 

implementation: important considerations 

The complete model on the induction of hibernation, 

presented in Figure 11, is in part hypothetical and requires 

additional research to validate every relationship. Given the 

supportive experimental evidence discussed in the previous 

sections, the model provides a starting framework for inter-

preting observations made in future in vivo experiments 

concerning hypothermia and hypometabolism, particularly in 

the context of integrative physiology. There are several 

important considerations regarding this type of research that 

must be accounted for, especially when data are interpreted on 

the basis of the model.  

As implied in sections 2.1 and 2.2, prevention of stress 

signaling upon exposure to a cold stimulus is crucial to safe 

lowering of metabolism, underscoring the need for validation of 

the Rx—(S)—Ztn relationship. This would require knowledge 

on both the location and function of the Ztn, which, as alluded to 

previously, is currently beyond our reach. However, by 

investigating the impact of a stimulus such as Ta or Rx on 

thermogenic effectors, heat loss effectors, and behavioral 

thermoregulation (Ztn—Tb, Figure 3B), the Ztn issues can be 

circumvented while still gaining insight into the Ztn lowering 

potency. Ztn-related research is presently conducted in this 

fashion, whereby ancillary parameters (effectors and behavior) 

are used as a gold standard to gauge Ztn [58]. 

 

 

Figure 11. Model for induction of (artificial) hypometabolism. Depicted 

parameters: Q, overall metabolism defined as chemical reaction speed (i.e., 

similar to k in Equation 1); C, catabolism; A, anabolism; Tb, core body 

temperature; Ta, ambient temperature; Ztn, thermoneutral zone; S, substrate; 

Rx, (bio)chemical agent able to induce hypometabolism. The relationships: 

Tb—Q, Arrhenius law; Ta—Tb, heat exchange; Ztn—Tb, thermogenesis and 

heat loss mechanisms; Ta—Ztn, sensory input; S—Ztn, hypoxic link; Rx—

S, hypoxia/hypoglycemia induction; Rx—C, catabolic modulation; Rx—A, 

anabolic modulation; Rx—Ztn, anapyrexic signal; S—A, metabolic 

substrate supply; Tb—Rx, positive/negative feedback loop. 

 
Due to their high Ta—Tb convective efficiency, small animals 

constitute ideal subjects for screening the anapyrexic potential 

of an Rx or investigating the effects of hypoxia. In larger animals, 

the lower Tb—Ta convective efficiency necessitates the use of 

active cooling to accommodate induction of hypothermia and 

corollary hypometabolism. If active cooling in larger animal 

models is omitted, an anapyrexic agent or hypoxia may yield 

hypometabolic results in small animals but induce limited or no 

effect in larger animals. A totally Tb-independent Rx (i.e., Rx—

Q , Tb = 37 °C) would be in contradiction to this model and in 

fact disprove the necessity of Ta—Tb convection. It is our 

opinion, however, that hypometabolism cannot occur under 

normothermic conditions  ̶  an opinion that is supported by 

extension of the Arrhenius law.  

When translating these principles to a clinical setting, the use 

of the Rx(—S)—Ztn relationship suggests that better outcomes 

would be achieved if hypothermic patients were pretreated with 

an anapyrexic agent (Rx—Ztn—Tb(—Ta)) or subjected to 

hypoxia (S—Ztn—Tb(—Ta)). The fact that clinical practice 

deviates from these approaches may contribute to the increased 
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comorbidity in patients as a result of hypothermia- inflicted 

stress responses during trauma-induced and perioperative 

hypothermia [15,162]. Presently, none of the strategies aimed to 

resolve these responses in patients encompass guidelines for Ztn 

modulation. As a result, many patients are placed on 100% O2 

and symptomatic treatment of shivering without a clear 

rationale. According to our model, a more cautious approach in 

oxygenating hypothermic patients could be beneficial, as 

reflected by the S—Ztn—Tb signaling axis. By subjecting a 

hypothermic patient to a hypoxic signal (S—Ztn) or anapyrexic 

agent (Rx(—S)—Ztn), the cold-induced stress response may be 

mitigated by reduction of Ztn through CB signaling and 

alignment of Tb with Ta. As exposure to a cold stimulus readily 

activates thermal effectors such as shivering and BAT [163,164], 

such an effect would be promptly visible. However, to date no 

anapyrexic agents or hypoxic signaling mechanisms have been 

reported in a clinical setting. 

3. Conclusions 

In conclusion, the lack of understanding of the induction 

mechanisms underlying natural hibernation stands in the way of 

successful application of artificial hibernation in biotechnology 

and medicine. Accordingly, a model was developed to assist in 

finding the means to translate the physiological changes 

observed during natural hibernation to its artificial counterpart. 

Summarized in Figure 11, six essential elements form the basis 

of our model, which were extrapolated from literature. The 

relationships between these elements dictate their values and 

collectively govern the induction and sustenance of a 

hypometabolic state. To illustrate the potential validity of this 

model, various Rx (HIT, DOP, H2S, 5’-AMP, TAM, 2-DG, Mg2+) 

were described in terms of their influence on the intervariable 

relationships and effects on Q.  

Although the ultimate purpose of this hypothetical model 

was to help expand the paradigm regarding the mechanisms of 

hibernation from a physiological perspective and to assist in 

translating this natural phenomenon to the clinical setting, our 

model only comprises a part of the vastly complex biological 

systems that underlie anapyrexia and hypometabolism. 

Moreover, readers should note that concepts as ‘set point’ are 

model-based phenomena, rather than neurobiological constructs. 

The key to the mechanistic underpinning of anapyrexic 

signaling currently rests on the shoulders of neurobiology, 

which is slowly unveiling the neurological signaling pathways. 

In that respect, thermal reflexes (cold defense, fever, anapyrexia, 

hibernation, etc.) are mediated by changes in the discharge of 

neurons in neural circuits controlling thermoregulatory 

effectors, and understanding how and through which neuro-

chemical mediators these reflexes are effected will only be 

accomplished through detailed neurobiological experimentation. 

Accordingly, basic elucidation of the neurochemistry of 

anapyrexia is needed for the identification of useful Rxs [81, 82]. 
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